| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 2 |  | xpsnen2g | ⊢ ( ( 1o  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( { 1o }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  𝑉  →  ( { 1o }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐵  ∈  𝑊  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 7 |  | ensym | ⊢ ( ( { 1o }  ×  𝐴 )  ≈  𝐴  →  𝐴  ≈  ( { 1o }  ×  𝐴 ) ) | 
						
							| 8 |  | ensym | ⊢ ( ( { ∅ }  ×  𝐵 )  ≈  𝐵  →  𝐵  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 9 |  | incom | ⊢ ( ( { 1o }  ×  𝐴 )  ∩  ( { ∅ }  ×  𝐵 ) )  =  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐴 ) ) | 
						
							| 10 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐴 ) )  =  ∅ | 
						
							| 11 | 9 10 | eqtri | ⊢ ( ( { 1o }  ×  𝐴 )  ∩  ( { ∅ }  ×  𝐵 ) )  =  ∅ | 
						
							| 12 |  | djuenun | ⊢ ( ( 𝐴  ≈  ( { 1o }  ×  𝐴 )  ∧  𝐵  ≈  ( { ∅ }  ×  𝐵 )  ∧  ( ( { 1o }  ×  𝐴 )  ∩  ( { ∅ }  ×  𝐵 ) )  =  ∅ )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { 1o }  ×  𝐴 )  ∪  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 13 | 11 12 | mp3an3 | ⊢ ( ( 𝐴  ≈  ( { 1o }  ×  𝐴 )  ∧  𝐵  ≈  ( { ∅ }  ×  𝐵 ) )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { 1o }  ×  𝐴 )  ∪  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 14 | 7 8 13 | syl2an | ⊢ ( ( ( { 1o }  ×  𝐴 )  ≈  𝐴  ∧  ( { ∅ }  ×  𝐵 )  ≈  𝐵 )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { 1o }  ×  𝐴 )  ∪  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 15 | 3 6 14 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { 1o }  ×  𝐴 )  ∪  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 16 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐴 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐴 ) ) | 
						
							| 17 | 16 | equncomi | ⊢ ( 𝐵  ⊔  𝐴 )  =  ( ( { 1o }  ×  𝐴 )  ∪  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 18 | 15 17 | breqtrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐵  ⊔  𝐴 ) ) |