Metamath Proof Explorer


Theorem djucomen

Description: Commutative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 24-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djucomen ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≈ ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 xpsnen2g ( ( 1o ∈ V ∧ 𝐴𝑉 ) → ( { 1o } × 𝐴 ) ≈ 𝐴 )
3 1 2 mpan ( 𝐴𝑉 → ( { 1o } × 𝐴 ) ≈ 𝐴 )
4 0ex ∅ ∈ V
5 xpsnen2g ( ( ∅ ∈ V ∧ 𝐵𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 )
6 4 5 mpan ( 𝐵𝑊 → ( { ∅ } × 𝐵 ) ≈ 𝐵 )
7 ensym ( ( { 1o } × 𝐴 ) ≈ 𝐴𝐴 ≈ ( { 1o } × 𝐴 ) )
8 ensym ( ( { ∅ } × 𝐵 ) ≈ 𝐵𝐵 ≈ ( { ∅ } × 𝐵 ) )
9 incom ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) )
10 xp01disjl ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) ) = ∅
11 9 10 eqtri ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅
12 djuenun ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ∧ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅ ) → ( 𝐴𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) )
13 11 12 mp3an3 ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → ( 𝐴𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) )
14 7 8 13 syl2an ( ( ( { 1o } × 𝐴 ) ≈ 𝐴 ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( 𝐴𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) )
15 3 6 14 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) )
16 df-dju ( 𝐵𝐴 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐴 ) )
17 16 equncomi ( 𝐵𝐴 ) = ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) )
18 15 17 breqtrrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≈ ( 𝐵𝐴 ) )