| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 2 | 1 | xpdom2 | ⊢ ( 𝐴  ≼  𝐵  →  ( { ∅ }  ×  𝐴 )  ≼  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 3 |  | snex | ⊢ { 1o }  ∈  V | 
						
							| 4 |  | xpexg | ⊢ ( ( { 1o }  ∈  V  ∧  𝐶  ∈  𝑉 )  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝐶  ∈  𝑉  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 6 |  | domrefg | ⊢ ( ( { 1o }  ×  𝐶 )  ∈  V  →  ( { 1o }  ×  𝐶 )  ≼  ( { 1o }  ×  𝐶 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐶  ∈  𝑉  →  ( { 1o }  ×  𝐶 )  ≼  ( { 1o }  ×  𝐶 ) ) | 
						
							| 8 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ | 
						
							| 9 |  | undom | ⊢ ( ( ( ( { ∅ }  ×  𝐴 )  ≼  ( { ∅ }  ×  𝐵 )  ∧  ( { 1o }  ×  𝐶 )  ≼  ( { 1o }  ×  𝐶 ) )  ∧  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≼  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ≼  ( { ∅ }  ×  𝐵 )  ∧  ( { 1o }  ×  𝐶 )  ≼  ( { 1o }  ×  𝐶 ) )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≼  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 11 | 2 7 10 | syl2an | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≼  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 12 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 13 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 14 | 11 12 13 | 3brtr4g | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ⊔  𝐶 )  ≼  ( 𝐵  ⊔  𝐶 ) ) |