Step |
Hyp |
Ref |
Expression |
1 |
|
snex |
⊢ { ∅ } ∈ V |
2 |
1
|
xpdom2 |
⊢ ( 𝐴 ≼ 𝐵 → ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ) |
3 |
|
snex |
⊢ { 1o } ∈ V |
4 |
|
xpexg |
⊢ ( ( { 1o } ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( { 1o } × 𝐶 ) ∈ V ) |
5 |
3 4
|
mpan |
⊢ ( 𝐶 ∈ 𝑉 → ( { 1o } × 𝐶 ) ∈ V ) |
6 |
|
domrefg |
⊢ ( ( { 1o } × 𝐶 ) ∈ V → ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐶 ∈ 𝑉 → ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) |
8 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ |
9 |
|
undom |
⊢ ( ( ( ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) ∧ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
10 |
8 9
|
mpan2 |
⊢ ( ( ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
11 |
2 7 10
|
syl2an |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
12 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) |
13 |
|
df-dju |
⊢ ( 𝐵 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) |
14 |
11 12 13
|
3brtr4g |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) |