| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djudom1 | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ⊔  𝐶 )  ≼  ( 𝐵  ⊔  𝐶 ) ) | 
						
							| 2 |  | reldom | ⊢ Rel   ≼ | 
						
							| 3 | 2 | brrelex1i | ⊢ ( 𝐴  ≼  𝐵  →  𝐴  ∈  V ) | 
						
							| 4 |  | djucomen | ⊢ ( ( 𝐴  ∈  V  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐴 ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐴 ) ) | 
						
							| 6 | 2 | brrelex2i | ⊢ ( 𝐴  ≼  𝐵  →  𝐵  ∈  V ) | 
						
							| 7 |  | djucomen | ⊢ ( ( 𝐵  ∈  V  ∧  𝐶  ∈  𝑉 )  →  ( 𝐵  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐵 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝐵  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐵 ) ) | 
						
							| 9 |  | domen1 | ⊢ ( ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐴 )  →  ( ( 𝐴  ⊔  𝐶 )  ≼  ( 𝐵  ⊔  𝐶 )  ↔  ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐵  ⊔  𝐶 ) ) ) | 
						
							| 10 |  | domen2 | ⊢ ( ( 𝐵  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐵 )  →  ( ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐵  ⊔  𝐶 )  ↔  ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐶  ⊔  𝐵 ) ) ) | 
						
							| 11 | 9 10 | sylan9bb | ⊢ ( ( ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐴 )  ∧  ( 𝐵  ⊔  𝐶 )  ≈  ( 𝐶  ⊔  𝐵 ) )  →  ( ( 𝐴  ⊔  𝐶 )  ≼  ( 𝐵  ⊔  𝐶 )  ↔  ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐶  ⊔  𝐵 ) ) ) | 
						
							| 12 | 5 8 11 | syl2anc | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝐴  ⊔  𝐶 )  ≼  ( 𝐵  ⊔  𝐶 )  ↔  ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐶  ⊔  𝐵 ) ) ) | 
						
							| 13 | 1 12 | mpbid | ⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝐶  ⊔  𝐴 )  ≼  ( 𝐶  ⊔  𝐵 ) ) |