Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudoml | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 2 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 3 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 4 | 1 2 3 | mpisyl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) | 
| 5 | undjudom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 6 | domtr | ⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |