Metamath Proof Explorer


Theorem djudoml

Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djudoml ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴 ≼ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
2 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
3 ssdomg ( ( 𝐴𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴𝐵 ) → 𝐴 ≼ ( 𝐴𝐵 ) ) )
4 1 2 3 mpisyl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴 ≼ ( 𝐴𝐵 ) )
5 undjudom ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
6 domtr ( ( 𝐴 ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) ) → 𝐴 ≼ ( 𝐴𝐵 ) )
7 4 5 6 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴 ≼ ( 𝐴𝐵 ) )