| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | relen | ⊢ Rel   ≈ | 
						
							| 3 | 2 | brrelex1i | ⊢ ( 𝐴  ≈  𝐵  →  𝐴  ∈  V ) | 
						
							| 4 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  V )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 5 | 1 3 4 | sylancr | ⊢ ( 𝐴  ≈  𝐵  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 6 | 2 | brrelex2i | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ∈  V ) | 
						
							| 7 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐵  ∈  V )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 8 | 1 6 7 | sylancr | ⊢ ( 𝐴  ≈  𝐵  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 9 | 8 | ensymd | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 10 |  | entr | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ≈  ( { ∅ }  ×  𝐵 ) )  →  𝐴  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 11 | 9 10 | mpdan | ⊢ ( 𝐴  ≈  𝐵  →  𝐴  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 12 |  | entr | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ≈  𝐴  ∧  𝐴  ≈  ( { ∅ }  ×  𝐵 ) )  →  ( { ∅ }  ×  𝐴 )  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 13 | 5 11 12 | syl2anc | ⊢ ( 𝐴  ≈  𝐵  →  ( { ∅ }  ×  𝐴 )  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 14 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 15 | 2 | brrelex1i | ⊢ ( 𝐶  ≈  𝐷  →  𝐶  ∈  V ) | 
						
							| 16 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐶  ∈  V )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝐶  ≈  𝐷  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 18 | 2 | brrelex2i | ⊢ ( 𝐶  ≈  𝐷  →  𝐷  ∈  V ) | 
						
							| 19 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐷  ∈  V )  →  ( { 1o }  ×  𝐷 )  ≈  𝐷 ) | 
						
							| 20 | 14 18 19 | sylancr | ⊢ ( 𝐶  ≈  𝐷  →  ( { 1o }  ×  𝐷 )  ≈  𝐷 ) | 
						
							| 21 | 20 | ensymd | ⊢ ( 𝐶  ≈  𝐷  →  𝐷  ≈  ( { 1o }  ×  𝐷 ) ) | 
						
							| 22 |  | entr | ⊢ ( ( 𝐶  ≈  𝐷  ∧  𝐷  ≈  ( { 1o }  ×  𝐷 ) )  →  𝐶  ≈  ( { 1o }  ×  𝐷 ) ) | 
						
							| 23 | 21 22 | mpdan | ⊢ ( 𝐶  ≈  𝐷  →  𝐶  ≈  ( { 1o }  ×  𝐷 ) ) | 
						
							| 24 |  | entr | ⊢ ( ( ( { 1o }  ×  𝐶 )  ≈  𝐶  ∧  𝐶  ≈  ( { 1o }  ×  𝐷 ) )  →  ( { 1o }  ×  𝐶 )  ≈  ( { 1o }  ×  𝐷 ) ) | 
						
							| 25 | 17 23 24 | syl2anc | ⊢ ( 𝐶  ≈  𝐷  →  ( { 1o }  ×  𝐶 )  ≈  ( { 1o }  ×  𝐷 ) ) | 
						
							| 26 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ | 
						
							| 27 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐷 ) )  =  ∅ | 
						
							| 28 |  | unen | ⊢ ( ( ( ( { ∅ }  ×  𝐴 )  ≈  ( { ∅ }  ×  𝐵 )  ∧  ( { 1o }  ×  𝐶 )  ≈  ( { 1o }  ×  𝐷 ) )  ∧  ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅  ∧  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐷 ) )  =  ∅ ) )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≈  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) ) | 
						
							| 29 | 26 27 28 | mpanr12 | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ≈  ( { ∅ }  ×  𝐵 )  ∧  ( { 1o }  ×  𝐶 )  ≈  ( { 1o }  ×  𝐷 ) )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≈  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) ) | 
						
							| 30 | 13 25 29 | syl2an | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  ≈  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) ) | 
						
							| 31 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 32 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐷 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) | 
						
							| 33 | 30 31 32 | 3brtr4g | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ⊔  𝐷 ) ) |