| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djuen | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ⊔  𝐷 ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ⊔  𝐷 ) ) | 
						
							| 3 |  | relen | ⊢ Rel   ≈ | 
						
							| 4 | 3 | brrelex2i | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ∈  V ) | 
						
							| 5 | 3 | brrelex2i | ⊢ ( 𝐶  ≈  𝐷  →  𝐷  ∈  V ) | 
						
							| 6 |  | id | ⊢ ( ( 𝐵  ∩  𝐷 )  =  ∅  →  ( 𝐵  ∩  𝐷 )  =  ∅ ) | 
						
							| 7 |  | endjudisj | ⊢ ( ( 𝐵  ∈  V  ∧  𝐷  ∈  V  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐵  ⊔  𝐷 )  ≈  ( 𝐵  ∪  𝐷 ) ) | 
						
							| 8 | 4 5 6 7 | syl3an | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐵  ⊔  𝐷 )  ≈  ( 𝐵  ∪  𝐷 ) ) | 
						
							| 9 |  | entr | ⊢ ( ( ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ⊔  𝐷 )  ∧  ( 𝐵  ⊔  𝐷 )  ≈  ( 𝐵  ∪  𝐷 ) )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) | 
						
							| 10 | 2 8 9 | syl2anc | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ⊔  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) |