Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq2 |
⊢ ( 𝐴 = 𝐵 → ( { ∅ } × 𝐴 ) = ( { ∅ } × 𝐵 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( { ∅ } × 𝐴 ) = ( { ∅ } × 𝐵 ) ) |
3 |
|
xpeq2 |
⊢ ( 𝐶 = 𝐷 → ( { 1o } × 𝐶 ) = ( { 1o } × 𝐷 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( { 1o } × 𝐶 ) = ( { 1o } × 𝐷 ) ) |
5 |
2 4
|
uneq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
6 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) |
7 |
|
df-dju |
⊢ ( 𝐵 ⊔ 𝐷 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) |
8 |
5 6 7
|
3eqtr4g |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) = ( 𝐵 ⊔ 𝐷 ) ) |