| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpeq2 | ⊢ ( 𝐴  =  𝐵  →  ( { ∅ }  ×  𝐴 )  =  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐶  =  𝐷 )  →  ( { ∅ }  ×  𝐴 )  =  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 3 |  | xpeq2 | ⊢ ( 𝐶  =  𝐷  →  ( { 1o }  ×  𝐶 )  =  ( { 1o }  ×  𝐷 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐶  =  𝐷 )  →  ( { 1o }  ×  𝐶 )  =  ( { 1o }  ×  𝐷 ) ) | 
						
							| 5 | 2 4 | uneq12d | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐶  =  𝐷 )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) ) | 
						
							| 6 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 7 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐷 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐷 ) ) | 
						
							| 8 | 5 6 7 | 3eqtr4g | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐶  =  𝐷 )  →  ( 𝐴  ⊔  𝐶 )  =  ( 𝐵  ⊔  𝐷 ) ) |