Metamath Proof Explorer


Theorem djuex

Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion djuex ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
2 snex { ∅ } ∈ V
3 2 a1i ( 𝐵𝑊 → { ∅ } ∈ V )
4 xpexg ( ( { ∅ } ∈ V ∧ 𝐴𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V )
5 3 4 sylan ( ( 𝐵𝑊𝐴𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V )
6 5 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → ( { ∅ } × 𝐴 ) ∈ V )
7 snex { 1o } ∈ V
8 7 a1i ( 𝐴𝑉 → { 1o } ∈ V )
9 xpexg ( ( { 1o } ∈ V ∧ 𝐵𝑊 ) → ( { 1o } × 𝐵 ) ∈ V )
10 8 9 sylan ( ( 𝐴𝑉𝐵𝑊 ) → ( { 1o } × 𝐵 ) ∈ V )
11 unexg ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V )
12 6 10 11 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V )
13 1 12 eqeltrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )