Step |
Hyp |
Ref |
Expression |
1 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
2 |
|
snex |
⊢ { ∅ } ∈ V |
3 |
2
|
a1i |
⊢ ( 𝐵 ∈ 𝑊 → { ∅ } ∈ V ) |
4 |
|
xpexg |
⊢ ( ( { ∅ } ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V ) |
6 |
5
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐴 ) ∈ V ) |
7 |
|
snex |
⊢ { 1o } ∈ V |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → { 1o } ∈ V ) |
9 |
|
xpexg |
⊢ ( ( { 1o } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ∈ V ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ∈ V ) |
11 |
|
unexg |
⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
12 |
6 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
13 |
1 12
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |