Description: Alternate proof of djuex , which is shorter, but based indirectly on the definitions of inl and inr . (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | djuexALT | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex | ⊢ { ∅ , 1o } ∈ V | |
2 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
3 | xpexg | ⊢ ( ( { ∅ , 1o } ∈ V ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ∈ V ) | |
4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
5 | djuss | ⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) | |
6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ⊆ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
7 | 4 6 | ssexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |