| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djuex |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
| 2 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
| 3 |
2
|
eleq1i |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
| 4 |
|
unexb |
⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ) |
| 6 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
| 7 |
6
|
necomi |
⊢ { ∅ } ≠ ∅ |
| 8 |
|
rnexg |
⊢ ( ( { ∅ } × 𝐴 ) ∈ V → ran ( { ∅ } × 𝐴 ) ∈ V ) |
| 9 |
|
rnxp |
⊢ ( { ∅ } ≠ ∅ → ran ( { ∅ } × 𝐴 ) = 𝐴 ) |
| 10 |
9
|
eleq1d |
⊢ ( { ∅ } ≠ ∅ → ( ran ( { ∅ } × 𝐴 ) ∈ V ↔ 𝐴 ∈ V ) ) |
| 11 |
8 10
|
imbitrid |
⊢ ( { ∅ } ≠ ∅ → ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) ) |
| 12 |
7 11
|
ax-mp |
⊢ ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) |
| 13 |
|
1oex |
⊢ 1o ∈ V |
| 14 |
13
|
snnz |
⊢ { 1o } ≠ ∅ |
| 15 |
|
rnexg |
⊢ ( ( { 1o } × 𝐵 ) ∈ V → ran ( { 1o } × 𝐵 ) ∈ V ) |
| 16 |
|
rnxp |
⊢ ( { 1o } ≠ ∅ → ran ( { 1o } × 𝐵 ) = 𝐵 ) |
| 17 |
16
|
eleq1d |
⊢ ( { 1o } ≠ ∅ → ( ran ( { 1o } × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
| 18 |
15 17
|
imbitrid |
⊢ ( { 1o } ≠ ∅ → ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
| 19 |
14 18
|
ax-mp |
⊢ ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) |
| 20 |
12 19
|
anim12i |
⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 21 |
5 20
|
sylbi |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 22 |
1 21
|
impbii |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) |