Step |
Hyp |
Ref |
Expression |
1 |
|
djuex |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
2 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
3 |
2
|
eleq1i |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
4 |
|
unexb |
⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
5 |
3 4
|
bitr4i |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ) |
6 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
7 |
6
|
necomi |
⊢ { ∅ } ≠ ∅ |
8 |
|
rnexg |
⊢ ( ( { ∅ } × 𝐴 ) ∈ V → ran ( { ∅ } × 𝐴 ) ∈ V ) |
9 |
|
rnxp |
⊢ ( { ∅ } ≠ ∅ → ran ( { ∅ } × 𝐴 ) = 𝐴 ) |
10 |
9
|
eleq1d |
⊢ ( { ∅ } ≠ ∅ → ( ran ( { ∅ } × 𝐴 ) ∈ V ↔ 𝐴 ∈ V ) ) |
11 |
8 10
|
syl5ib |
⊢ ( { ∅ } ≠ ∅ → ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) ) |
12 |
7 11
|
ax-mp |
⊢ ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) |
13 |
|
1oex |
⊢ 1o ∈ V |
14 |
13
|
snnz |
⊢ { 1o } ≠ ∅ |
15 |
|
rnexg |
⊢ ( ( { 1o } × 𝐵 ) ∈ V → ran ( { 1o } × 𝐵 ) ∈ V ) |
16 |
|
rnxp |
⊢ ( { 1o } ≠ ∅ → ran ( { 1o } × 𝐵 ) = 𝐵 ) |
17 |
16
|
eleq1d |
⊢ ( { 1o } ≠ ∅ → ( ran ( { 1o } × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
18 |
15 17
|
syl5ib |
⊢ ( { 1o } ≠ ∅ → ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
19 |
14 18
|
ax-mp |
⊢ ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) |
20 |
12 19
|
anim12i |
⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
21 |
5 20
|
sylbi |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
22 |
1 21
|
impbii |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) |