| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐵 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) | 
						
							| 2 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 3 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 4 | 3 | brrelex1i | ⊢ ( 𝐴  ≺  ω  →  𝐴  ∈  V ) | 
						
							| 5 |  | xpsnen2g | ⊢ ( ( ∅  ∈  On  ∧  𝐴  ∈  V )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 6 | 2 4 5 | sylancr | ⊢ ( 𝐴  ≺  ω  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 7 |  | sdomen1 | ⊢ ( ( { ∅ }  ×  𝐴 )  ≈  𝐴  →  ( ( { ∅ }  ×  𝐴 )  ≺  ω  ↔  𝐴  ≺  ω ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ≺  ω  →  ( ( { ∅ }  ×  𝐴 )  ≺  ω  ↔  𝐴  ≺  ω ) ) | 
						
							| 9 | 8 | ibir | ⊢ ( 𝐴  ≺  ω  →  ( { ∅ }  ×  𝐴 )  ≺  ω ) | 
						
							| 10 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 11 | 3 | brrelex1i | ⊢ ( 𝐵  ≺  ω  →  𝐵  ∈  V ) | 
						
							| 12 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐵  ∈  V )  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( 𝐵  ≺  ω  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 14 |  | sdomen1 | ⊢ ( ( { 1o }  ×  𝐵 )  ≈  𝐵  →  ( ( { 1o }  ×  𝐵 )  ≺  ω  ↔  𝐵  ≺  ω ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐵  ≺  ω  →  ( ( { 1o }  ×  𝐵 )  ≺  ω  ↔  𝐵  ≺  ω ) ) | 
						
							| 16 | 15 | ibir | ⊢ ( 𝐵  ≺  ω  →  ( { 1o }  ×  𝐵 )  ≺  ω ) | 
						
							| 17 |  | unfi2 | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ≺  ω  ∧  ( { 1o }  ×  𝐵 )  ≺  ω )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  ≺  ω ) | 
						
							| 18 | 9 16 17 | syl2an | ⊢ ( ( 𝐴  ≺  ω  ∧  𝐵  ≺  ω )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  ≺  ω ) | 
						
							| 19 | 1 18 | eqbrtrid | ⊢ ( ( 𝐴  ≺  ω  ∧  𝐵  ≺  ω )  →  ( 𝐴  ⊔  𝐵 )  ≺  ω ) |