Step |
Hyp |
Ref |
Expression |
1 |
|
incom |
⊢ ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ( ( inl “ 𝐴 ) ∩ ( inr “ 𝐵 ) ) |
2 |
|
imassrn |
⊢ ( inr “ 𝐵 ) ⊆ ran inr |
3 |
|
djurf1o |
⊢ inr : V –1-1-onto→ ( { 1o } × V ) |
4 |
|
f1of |
⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → inr : V ⟶ ( { 1o } × V ) ) |
5 |
|
frn |
⊢ ( inr : V ⟶ ( { 1o } × V ) → ran inr ⊆ ( { 1o } × V ) ) |
6 |
3 4 5
|
mp2b |
⊢ ran inr ⊆ ( { 1o } × V ) |
7 |
2 6
|
sstri |
⊢ ( inr “ 𝐵 ) ⊆ ( { 1o } × V ) |
8 |
|
incom |
⊢ ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) |
9 |
|
imassrn |
⊢ ( inl “ 𝐴 ) ⊆ ran inl |
10 |
|
djulf1o |
⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |
11 |
|
f1of |
⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → inl : V ⟶ ( { ∅ } × V ) ) |
12 |
|
frn |
⊢ ( inl : V ⟶ ( { ∅ } × V ) → ran inl ⊆ ( { ∅ } × V ) ) |
13 |
10 11 12
|
mp2b |
⊢ ran inl ⊆ ( { ∅ } × V ) |
14 |
9 13
|
sstri |
⊢ ( inl “ 𝐴 ) ⊆ ( { ∅ } × V ) |
15 |
|
1n0 |
⊢ 1o ≠ ∅ |
16 |
15
|
necomi |
⊢ ∅ ≠ 1o |
17 |
|
disjsn2 |
⊢ ( ∅ ≠ 1o → ( { ∅ } ∩ { 1o } ) = ∅ ) |
18 |
|
xpdisj1 |
⊢ ( ( { ∅ } ∩ { 1o } ) = ∅ → ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ ) |
19 |
16 17 18
|
mp2b |
⊢ ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ |
20 |
|
ssdisj |
⊢ ( ( ( inl “ 𝐴 ) ⊆ ( { ∅ } × V ) ∧ ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ ) → ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ∅ ) |
21 |
14 19 20
|
mp2an |
⊢ ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ∅ |
22 |
8 21
|
eqtr3i |
⊢ ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) = ∅ |
23 |
|
ssdisj |
⊢ ( ( ( inr “ 𝐵 ) ⊆ ( { 1o } × V ) ∧ ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) = ∅ ) → ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ∅ ) |
24 |
7 22 23
|
mp2an |
⊢ ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ∅ |
25 |
1 24
|
eqtr3i |
⊢ ( ( inl “ 𝐴 ) ∩ ( inr “ 𝐵 ) ) = ∅ |