Metamath Proof Explorer


Theorem djulcl

Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djulcl ( 𝐶𝐴 → ( inl ‘ 𝐶 ) ∈ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-inl inl = ( 𝑥 ∈ V ↦ ⟨ ∅ , 𝑥 ⟩ )
2 opeq2 ( 𝑥 = 𝐶 → ⟨ ∅ , 𝑥 ⟩ = ⟨ ∅ , 𝐶 ⟩ )
3 elex ( 𝐶𝐴𝐶 ∈ V )
4 0ex ∅ ∈ V
5 4 snid ∅ ∈ { ∅ }
6 opelxpi ( ( ∅ ∈ { ∅ } ∧ 𝐶𝐴 ) → ⟨ ∅ , 𝐶 ⟩ ∈ ( { ∅ } × 𝐴 ) )
7 5 6 mpan ( 𝐶𝐴 → ⟨ ∅ , 𝐶 ⟩ ∈ ( { ∅ } × 𝐴 ) )
8 1 2 3 7 fvmptd3 ( 𝐶𝐴 → ( inl ‘ 𝐶 ) = ⟨ ∅ , 𝐶 ⟩ )
9 elun1 ( ⟨ ∅ , 𝐶 ⟩ ∈ ( { ∅ } × 𝐴 ) → ⟨ ∅ , 𝐶 ⟩ ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
10 7 9 syl ( 𝐶𝐴 → ⟨ ∅ , 𝐶 ⟩ ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
11 df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
12 10 11 eleqtrrdi ( 𝐶𝐴 → ⟨ ∅ , 𝐶 ⟩ ∈ ( 𝐴𝐵 ) )
13 8 12 eqeltrd ( 𝐶𝐴 → ( inl ‘ 𝐶 ) ∈ ( 𝐴𝐵 ) )