Step |
Hyp |
Ref |
Expression |
1 |
|
djueq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ⊔ 𝐵 ) = ( ∅ ⊔ 𝐵 ) ) |
2 |
1
|
breq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ↔ ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) ) |
3 |
|
relen |
⊢ Rel ≈ |
4 |
3
|
brrelex2i |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝐴 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ∈ V ) |
6 |
|
canth2g |
⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
7 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) |
8 |
5 6 7
|
3syl |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ≼ 𝒫 𝐴 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ 𝒫 𝐴 ) |
10 |
|
reldom |
⊢ Rel ≼ |
11 |
10
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝐵 ∈ V ) |
12 |
|
djudom1 |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
14 |
|
simpr |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ 𝒫 𝐴 ) |
15 |
10
|
brrelex2i |
⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
16 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
17 |
14 15 16
|
syl2anc2 |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
18 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ∧ ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
19 |
13 17 18
|
syl2anc |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
20 |
8 9 19
|
syl2anc |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
21 |
|
pwdju1 |
⊢ ( 𝐴 ∈ V → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
22 |
5 21
|
syl |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
23 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) |
24 |
20 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) |
26 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
27 |
5 26
|
syl |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
28 |
27
|
biimpar |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ∅ ≺ 𝐴 ) |
29 |
|
0sdom1dom |
⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
30 |
28 29
|
sylib |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 1o ≼ 𝐴 ) |
31 |
5
|
adantr |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
32 |
|
djudom2 |
⊢ ( ( 1o ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
34 |
|
simpll |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |
35 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) |
37 |
|
pwdom |
⊢ ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
39 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
40 |
25 38 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
41 |
|
0ex |
⊢ ∅ ∈ V |
42 |
11
|
adantl |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ∈ V ) |
43 |
|
djucomen |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ V ) → ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ) |
44 |
41 42 43
|
sylancr |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ) |
45 |
|
dju0en |
⊢ ( 𝐵 ∈ V → ( 𝐵 ⊔ ∅ ) ≈ 𝐵 ) |
46 |
|
domen1 |
⊢ ( ( 𝐵 ⊔ ∅ ) ≈ 𝐵 → ( ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ↔ 𝐵 ≼ 𝒫 𝐴 ) ) |
47 |
42 45 46
|
3syl |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ↔ 𝐵 ≼ 𝒫 𝐴 ) ) |
48 |
9 47
|
mpbird |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ) |
49 |
|
endomtr |
⊢ ( ( ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ∧ ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
50 |
44 48 49
|
syl2anc |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
51 |
2 40 50
|
pm2.61ne |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |