Step |
Hyp |
Ref |
Expression |
1 |
|
df-inl |
⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
2
|
snid |
⊢ ∅ ∈ { ∅ } |
4 |
|
opelxpi |
⊢ ( ( ∅ ∈ { ∅ } ∧ 𝑥 ∈ V ) → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝑥 ∈ V → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) |
6 |
5
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ V ) → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) |
7 |
|
fvexd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( { ∅ } × V ) ) → ( 2nd ‘ 𝑦 ) ∈ V ) |
8 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
9 |
|
xp1st |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st ‘ 𝑦 ) ∈ { ∅ } ) |
10 |
|
elsni |
⊢ ( ( 1st ‘ 𝑦 ) ∈ { ∅ } → ( 1st ‘ 𝑦 ) = ∅ ) |
11 |
9 10
|
syl |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st ‘ 𝑦 ) = ∅ ) |
12 |
11
|
opeq1d |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) |
13 |
8 12
|
eqtrd |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 〈 ∅ , 𝑥 〉 = 𝑦 ↔ 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) ) |
15 |
|
eqcom |
⊢ ( 〈 ∅ , 𝑥 〉 = 𝑦 ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) |
16 |
|
eqid |
⊢ ∅ = ∅ |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
2 17
|
opth |
⊢ ( 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ∅ = ∅ ∧ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
19 |
16 18
|
mpbiran |
⊢ ( 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) |
20 |
14 15 19
|
3bitr3g |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑦 = 〈 ∅ , 𝑥 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
21 |
20
|
bicomd |
⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) ) |
22 |
21
|
ad2antll |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( { ∅ } × V ) ) ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) ) |
23 |
1 6 7 22
|
f1o2d |
⊢ ( ⊤ → inl : V –1-1-onto→ ( { ∅ } × V ) ) |
24 |
23
|
mptru |
⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |