Step |
Hyp |
Ref |
Expression |
1 |
|
df-inr |
⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) |
2 |
|
1onn |
⊢ 1o ∈ ω |
3 |
|
snidg |
⊢ ( 1o ∈ ω → 1o ∈ { 1o } ) |
4 |
2 3
|
ax-mp |
⊢ 1o ∈ { 1o } |
5 |
|
opelxpi |
⊢ ( ( 1o ∈ { 1o } ∧ 𝑥 ∈ V ) → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝑥 ∈ V → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ V ) → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) |
8 |
|
fvexd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( { 1o } × V ) ) → ( 2nd ‘ 𝑦 ) ∈ V ) |
9 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
10 |
|
xp1st |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 1st ‘ 𝑦 ) ∈ { 1o } ) |
11 |
|
elsni |
⊢ ( ( 1st ‘ 𝑦 ) ∈ { 1o } → ( 1st ‘ 𝑦 ) = 1o ) |
12 |
10 11
|
syl |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 1st ‘ 𝑦 ) = 1o ) |
13 |
12
|
opeq1d |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) |
14 |
9 13
|
eqtrd |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → 𝑦 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 〈 1o , 𝑥 〉 = 𝑦 ↔ 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) ) |
16 |
|
eqcom |
⊢ ( 〈 1o , 𝑥 〉 = 𝑦 ↔ 𝑦 = 〈 1o , 𝑥 〉 ) |
17 |
|
eqid |
⊢ 1o = 1o |
18 |
|
1oex |
⊢ 1o ∈ V |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
18 19
|
opth |
⊢ ( 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ↔ ( 1o = 1o ∧ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
21 |
17 20
|
mpbiran |
⊢ ( 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) |
22 |
15 16 21
|
3bitr3g |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 𝑦 = 〈 1o , 𝑥 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
23 |
22
|
bicomd |
⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 1o , 𝑥 〉 ) ) |
24 |
23
|
ad2antll |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( { 1o } × V ) ) ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 1o , 𝑥 〉 ) ) |
25 |
1 7 8 24
|
f1o2d |
⊢ ( ⊤ → inr : V –1-1-onto→ ( { 1o } × V ) ) |
26 |
25
|
mptru |
⊢ inr : V –1-1-onto→ ( { 1o } × V ) |