Step |
Hyp |
Ref |
Expression |
1 |
|
djur |
⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) ) |
2 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 = ( inl ‘ 𝑦 ) ) |
3 |
|
df-inl |
⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) |
4 |
|
opeq2 |
⊢ ( 𝑥 = 𝑦 → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 𝑦 〉 ) |
5 |
|
elex |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ V ) |
6 |
|
opex |
⊢ 〈 ∅ , 𝑦 〉 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝑦 ∈ 𝐴 → 〈 ∅ , 𝑦 〉 ∈ V ) |
8 |
3 4 5 7
|
fvmptd3 |
⊢ ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) = 〈 ∅ , 𝑦 〉 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( inl ‘ 𝑦 ) = 〈 ∅ , 𝑦 〉 ) |
10 |
2 9
|
eqtrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 = 〈 ∅ , 𝑦 〉 ) |
11 |
|
elun1 |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
12
|
prid1 |
⊢ ∅ ∈ { ∅ , 1o } |
14 |
11 13
|
jctil |
⊢ ( 𝑦 ∈ 𝐴 → ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
16 |
|
opelxp |
⊢ ( 〈 ∅ , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ↔ ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 〈 ∅ , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
18 |
10 17
|
eqeltrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
19 |
18
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 = ( inr ‘ 𝑦 ) ) |
21 |
|
df-inr |
⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) |
22 |
|
opeq2 |
⊢ ( 𝑥 = 𝑦 → 〈 1o , 𝑥 〉 = 〈 1o , 𝑦 〉 ) |
23 |
|
elex |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ V ) |
24 |
|
opex |
⊢ 〈 1o , 𝑦 〉 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝑦 ∈ 𝐵 → 〈 1o , 𝑦 〉 ∈ V ) |
26 |
21 22 23 25
|
fvmptd3 |
⊢ ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) = 〈 1o , 𝑦 〉 ) |
27 |
26
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( inr ‘ 𝑦 ) = 〈 1o , 𝑦 〉 ) |
28 |
20 27
|
eqtrd |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 = 〈 1o , 𝑦 〉 ) |
29 |
|
elun2 |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) |
31 |
|
1oex |
⊢ 1o ∈ V |
32 |
31
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
33 |
30 32
|
jctil |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( 1o ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
34 |
|
opelxp |
⊢ ( 〈 1o , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ↔ ( 1o ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
35 |
33 34
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 〈 1o , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
36 |
28 35
|
eqeltrd |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
37 |
36
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
38 |
19 37
|
jaoi |
⊢ ( ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
39 |
1 38
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
40 |
39
|
ssriv |
⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) |