Metamath Proof Explorer


Theorem djussxp

Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Assertion djussxp 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V )

Proof

Step Hyp Ref Expression
1 iunss ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) ↔ ∀ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) )
2 snssi ( 𝑥𝐴 → { 𝑥 } ⊆ 𝐴 )
3 ssv 𝐵 ⊆ V
4 xpss12 ( ( { 𝑥 } ⊆ 𝐴𝐵 ⊆ V ) → ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) )
5 2 3 4 sylancl ( 𝑥𝐴 → ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) )
6 1 5 mprgbir 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V )