Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ↔ ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) |
2 |
|
djulf1o |
⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |
3 |
|
f1ofn |
⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → inl Fn V ) |
4 |
2 3
|
ax-mp |
⊢ inl Fn V |
5 |
|
ssv |
⊢ 𝐴 ⊆ V |
6 |
|
fvelimab |
⊢ ( ( inl Fn V ∧ 𝐴 ⊆ V ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) |
8 |
7
|
biimpi |
⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) |
9 |
|
simprr |
⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → ( inl ‘ 𝑢 ) = 𝑥 ) |
10 |
|
vex |
⊢ 𝑢 ∈ V |
11 |
|
opex |
⊢ 〈 ∅ , 𝑢 〉 ∈ V |
12 |
|
opeq2 |
⊢ ( 𝑧 = 𝑢 → 〈 ∅ , 𝑧 〉 = 〈 ∅ , 𝑢 〉 ) |
13 |
|
df-inl |
⊢ inl = ( 𝑧 ∈ V ↦ 〈 ∅ , 𝑧 〉 ) |
14 |
12 13
|
fvmptg |
⊢ ( ( 𝑢 ∈ V ∧ 〈 ∅ , 𝑢 〉 ∈ V ) → ( inl ‘ 𝑢 ) = 〈 ∅ , 𝑢 〉 ) |
15 |
10 11 14
|
mp2an |
⊢ ( inl ‘ 𝑢 ) = 〈 ∅ , 𝑢 〉 |
16 |
|
0ex |
⊢ ∅ ∈ V |
17 |
16
|
snid |
⊢ ∅ ∈ { ∅ } |
18 |
|
opelxpi |
⊢ ( ( ∅ ∈ { ∅ } ∧ 𝑢 ∈ 𝐴 ) → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) |
19 |
17 18
|
mpan |
⊢ ( 𝑢 ∈ 𝐴 → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) |
20 |
19
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) |
21 |
15 20
|
eqeltrid |
⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → ( inl ‘ 𝑢 ) ∈ ( { ∅ } × 𝐴 ) ) |
22 |
9 21
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → 𝑥 ∈ ( { ∅ } × 𝐴 ) ) |
23 |
8 22
|
rexlimddv |
⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( { ∅ } × 𝐴 ) ) |
24 |
|
elun1 |
⊢ ( 𝑥 ∈ ( { ∅ } × 𝐴 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
26 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
27 |
25 26
|
eleqtrrdi |
⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
28 |
|
djurf1o |
⊢ inr : V –1-1-onto→ ( { 1o } × V ) |
29 |
|
f1ofn |
⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → inr Fn V ) |
30 |
28 29
|
ax-mp |
⊢ inr Fn V |
31 |
|
ssv |
⊢ 𝐵 ⊆ V |
32 |
|
fvelimab |
⊢ ( ( inr Fn V ∧ 𝐵 ⊆ V ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) ) |
33 |
30 31 32
|
mp2an |
⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) |
34 |
33
|
biimpi |
⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) |
35 |
|
simprr |
⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → ( inr ‘ 𝑢 ) = 𝑥 ) |
36 |
|
opex |
⊢ 〈 1o , 𝑢 〉 ∈ V |
37 |
|
opeq2 |
⊢ ( 𝑧 = 𝑢 → 〈 1o , 𝑧 〉 = 〈 1o , 𝑢 〉 ) |
38 |
|
df-inr |
⊢ inr = ( 𝑧 ∈ V ↦ 〈 1o , 𝑧 〉 ) |
39 |
37 38
|
fvmptg |
⊢ ( ( 𝑢 ∈ V ∧ 〈 1o , 𝑢 〉 ∈ V ) → ( inr ‘ 𝑢 ) = 〈 1o , 𝑢 〉 ) |
40 |
10 36 39
|
mp2an |
⊢ ( inr ‘ 𝑢 ) = 〈 1o , 𝑢 〉 |
41 |
|
1oex |
⊢ 1o ∈ V |
42 |
41
|
snid |
⊢ 1o ∈ { 1o } |
43 |
|
opelxpi |
⊢ ( ( 1o ∈ { 1o } ∧ 𝑢 ∈ 𝐵 ) → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) |
44 |
42 43
|
mpan |
⊢ ( 𝑢 ∈ 𝐵 → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) |
45 |
44
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) |
46 |
40 45
|
eqeltrid |
⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → ( inr ‘ 𝑢 ) ∈ ( { 1o } × 𝐵 ) ) |
47 |
35 46
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → 𝑥 ∈ ( { 1o } × 𝐵 ) ) |
48 |
34 47
|
rexlimddv |
⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( { 1o } × 𝐵 ) ) |
49 |
|
elun2 |
⊢ ( 𝑥 ∈ ( { 1o } × 𝐵 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
50 |
48 49
|
syl |
⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
51 |
50 26
|
eleqtrrdi |
⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
52 |
27 51
|
jaoi |
⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
53 |
1 52
|
sylbi |
⊢ ( 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
54 |
53
|
ssriv |
⊢ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ⊆ ( 𝐴 ⊔ 𝐵 ) |
55 |
|
djur |
⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) ) |
56 |
|
vex |
⊢ 𝑦 ∈ V |
57 |
|
f1odm |
⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → dom inl = V ) |
58 |
2 57
|
ax-mp |
⊢ dom inl = V |
59 |
56 58
|
eleqtrri |
⊢ 𝑦 ∈ dom inl |
60 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑦 ∈ 𝐴 ) |
61 |
13
|
funmpt2 |
⊢ Fun inl |
62 |
|
funfvima |
⊢ ( ( Fun inl ∧ 𝑦 ∈ dom inl ) → ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
63 |
61 62
|
mpan |
⊢ ( 𝑦 ∈ dom inl → ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
64 |
59 60 63
|
mpsyl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) |
65 |
|
eleq1 |
⊢ ( 𝑥 = ( inl ‘ 𝑦 ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
67 |
64 66
|
mpbird |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 ∈ ( inl “ 𝐴 ) ) |
68 |
67
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) → 𝑥 ∈ ( inl “ 𝐴 ) ) |
69 |
|
f1odm |
⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → dom inr = V ) |
70 |
28 69
|
ax-mp |
⊢ dom inr = V |
71 |
56 70
|
eleqtrri |
⊢ 𝑦 ∈ dom inr |
72 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
73 |
|
f1ofun |
⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → Fun inr ) |
74 |
28 73
|
ax-mp |
⊢ Fun inr |
75 |
|
funfvima |
⊢ ( ( Fun inr ∧ 𝑦 ∈ dom inr ) → ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
76 |
74 75
|
mpan |
⊢ ( 𝑦 ∈ dom inr → ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
77 |
71 72 76
|
mpsyl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) |
78 |
|
eleq1 |
⊢ ( 𝑥 = ( inr ‘ 𝑦 ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
80 |
77 79
|
mpbird |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( inr “ 𝐵 ) ) |
81 |
80
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) → 𝑥 ∈ ( inr “ 𝐵 ) ) |
82 |
68 81
|
orim12i |
⊢ ( ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) |
83 |
55 82
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) |
84 |
83 1
|
sylibr |
⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ) |
85 |
84
|
ssriv |
⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) |
86 |
54 85
|
eqssi |
⊢ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) = ( 𝐴 ⊔ 𝐵 ) |