Metamath Proof Explorer


Theorem dlatjmdi

Description: In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses dlatjmdi.b 𝐵 = ( Base ‘ 𝐾 )
dlatjmdi.j = ( join ‘ 𝐾 )
dlatjmdi.m = ( meet ‘ 𝐾 )
Assertion dlatjmdi ( ( 𝐾 ∈ DLat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 dlatjmdi.b 𝐵 = ( Base ‘ 𝐾 )
2 dlatjmdi.j = ( join ‘ 𝐾 )
3 dlatjmdi.m = ( meet ‘ 𝐾 )
4 eqid ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 )
5 4 odudlatb ( 𝐾 ∈ DLat → ( 𝐾 ∈ DLat ↔ ( ODual ‘ 𝐾 ) ∈ DLat ) )
6 5 ibi ( 𝐾 ∈ DLat → ( ODual ‘ 𝐾 ) ∈ DLat )
7 4 1 odubas 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) )
8 4 3 odujoin = ( join ‘ ( ODual ‘ 𝐾 ) )
9 4 2 odumeet = ( meet ‘ ( ODual ‘ 𝐾 ) )
10 7 8 9 dlatmjdi ( ( ( ODual ‘ 𝐾 ) ∈ DLat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )
11 6 10 sylan ( ( 𝐾 ∈ DLat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) )