Metamath Proof Explorer


Theorem dlwwlknondlwlknonen

Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses dlwwlknondlwlknonbij.v 𝑉 = ( Vtx ‘ 𝐺 )
dlwwlknondlwlknonbij.w 𝑊 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st𝑤 ) ) = 𝑁 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) }
dlwwlknondlwlknonbij.d 𝐷 = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 }
Assertion dlwwlknondlwlknonen ( ( 𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ( ℤ ‘ 2 ) ) → 𝑊𝐷 )

Proof

Step Hyp Ref Expression
1 dlwwlknondlwlknonbij.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dlwwlknondlwlknonbij.w 𝑊 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st𝑤 ) ) = 𝑁 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) }
3 dlwwlknondlwlknonbij.d 𝐷 = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 }
4 fvex ( ClWalks ‘ 𝐺 ) ∈ V
5 2 4 rabex2 𝑊 ∈ V
6 ovex ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ V
7 3 6 rabex2 𝐷 ∈ V
8 eqid ( 𝑐𝑊 ↦ ( ( 2nd𝑐 ) prefix ( ♯ ‘ ( 1st𝑐 ) ) ) ) = ( 𝑐𝑊 ↦ ( ( 2nd𝑐 ) prefix ( ♯ ‘ ( 1st𝑐 ) ) ) )
9 1 2 3 8 dlwwlknondlwlknonf1o ( ( 𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ( ℤ ‘ 2 ) ) → ( 𝑐𝑊 ↦ ( ( 2nd𝑐 ) prefix ( ♯ ‘ ( 1st𝑐 ) ) ) ) : 𝑊1-1-onto𝐷 )
10 f1oen2g ( ( 𝑊 ∈ V ∧ 𝐷 ∈ V ∧ ( 𝑐𝑊 ↦ ( ( 2nd𝑐 ) prefix ( ♯ ‘ ( 1st𝑐 ) ) ) ) : 𝑊1-1-onto𝐷 ) → 𝑊𝐷 )
11 5 7 9 10 mp3an12i ( ( 𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ( ℤ ‘ 2 ) ) → 𝑊𝐷 )