Step |
Hyp |
Ref |
Expression |
1 |
|
dlwwlknondlwlknonbij.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dlwwlknondlwlknonbij.w |
⊢ 𝑊 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) } |
3 |
|
dlwwlknondlwlknonbij.d |
⊢ 𝐷 = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } |
4 |
|
fvex |
⊢ ( ClWalks ‘ 𝐺 ) ∈ V |
5 |
2 4
|
rabex2 |
⊢ 𝑊 ∈ V |
6 |
|
ovex |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ V |
7 |
3 6
|
rabex2 |
⊢ 𝐷 ∈ V |
8 |
|
eqid |
⊢ ( 𝑐 ∈ 𝑊 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) ) = ( 𝑐 ∈ 𝑊 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) ) |
9 |
1 2 3 8
|
dlwwlknondlwlknonf1o |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑐 ∈ 𝑊 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) ) : 𝑊 –1-1-onto→ 𝐷 ) |
10 |
|
f1oen2g |
⊢ ( ( 𝑊 ∈ V ∧ 𝐷 ∈ V ∧ ( 𝑐 ∈ 𝑊 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) ) : 𝑊 –1-1-onto→ 𝐷 ) → 𝑊 ≈ 𝐷 ) |
11 |
5 7 9 10
|
mp3an12i |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑊 ≈ 𝐷 ) |