Metamath Proof Explorer


Theorem dm0rn0

Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 24-Jan-2026)

Ref Expression
Assertion dm0rn0 ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦𝑥 𝐴 𝑦 ) )
2 breq2 ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) )
3 1 2 excomw ( ∃ 𝑧𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑦𝑧 𝑧 𝐴 𝑦 )
4 breq2 ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑤 ) )
5 1 4 sylan9bbr ( ( 𝑦 = 𝑤𝑧 = 𝑥 ) → ( 𝑧 𝐴 𝑦𝑥 𝐴 𝑤 ) )
6 5 cbvex2vw ( ∃ 𝑦𝑧 𝑧 𝐴 𝑦 ↔ ∃ 𝑤𝑥 𝑥 𝐴 𝑤 )
7 3 6 bitri ( ∃ 𝑧𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑤𝑥 𝑥 𝐴 𝑤 )
8 7 notbii ( ¬ ∃ 𝑧𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑤𝑥 𝑥 𝐴 𝑤 )
9 alnex ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑧𝑦 𝑧 𝐴 𝑦 )
10 alnex ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ¬ ∃ 𝑤𝑥 𝑥 𝐴 𝑤 )
11 8 9 10 3bitr4i ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 )
12 noel ¬ 𝑧 ∈ ∅
13 12 nbn ( ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑧 𝐴 𝑦𝑧 ∈ ∅ ) )
14 13 albii ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦𝑧 ∈ ∅ ) )
15 noel ¬ 𝑤 ∈ ∅
16 15 nbn ( ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑤𝑤 ∈ ∅ ) )
17 16 albii ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤𝑤 ∈ ∅ ) )
18 11 14 17 3bitr3i ( ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦𝑧 ∈ ∅ ) ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤𝑤 ∈ ∅ ) )
19 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑦 ) )
20 19 exbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 𝑧 𝐴 𝑦 ) )
21 20 eqabcbw ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦𝑧 ∈ ∅ ) )
22 4 exbidv ( 𝑦 = 𝑤 → ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∃ 𝑥 𝑥 𝐴 𝑤 ) )
23 22 eqabcbw ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤𝑤 ∈ ∅ ) )
24 18 21 23 3bitr4i ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ )
25 df-dm dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 }
26 25 eqeq1i ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ )
27 dfrn2 ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 }
28 27 eqeq1i ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ )
29 24 26 28 3bitr4i ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ )