| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
| 2 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑧 𝐴 𝑤 ) ) |
| 3 |
1 2
|
excomw |
⊢ ( ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑦 ∃ 𝑧 𝑧 𝐴 𝑦 ) |
| 4 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) |
| 5 |
1 4
|
sylan9bbr |
⊢ ( ( 𝑦 = 𝑤 ∧ 𝑧 = 𝑥 ) → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) |
| 6 |
5
|
cbvex2vw |
⊢ ( ∃ 𝑦 ∃ 𝑧 𝑧 𝐴 𝑦 ↔ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 7 |
3 6
|
bitri |
⊢ ( ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 8 |
7
|
notbii |
⊢ ( ¬ ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 9 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ) |
| 10 |
|
alnex |
⊢ ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ¬ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 11 |
8 9 10
|
3bitr4i |
⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 12 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
| 13 |
12
|
nbn |
⊢ ( ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 14 |
13
|
albii |
⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 15 |
|
noel |
⊢ ¬ 𝑤 ∈ ∅ |
| 16 |
15
|
nbn |
⊢ ( ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 17 |
16
|
albii |
⊢ ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 18 |
11 14 17
|
3bitr3i |
⊢ ( ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦 ↔ 𝑧 𝐴 𝑦 ) ) |
| 20 |
19
|
exbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 𝑧 𝐴 𝑦 ) ) |
| 21 |
20
|
eqabcbw |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 22 |
4
|
exbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∃ 𝑥 𝑥 𝐴 𝑤 ) ) |
| 23 |
22
|
eqabcbw |
⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 24 |
18 21 23
|
3bitr4i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 25 |
|
df-dm |
⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
| 26 |
25
|
eqeq1i |
⊢ ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ) |
| 27 |
|
dfrn2 |
⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
| 28 |
27
|
eqeq1i |
⊢ ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 29 |
24 26 28
|
3bitr4i |
⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |