Step |
Hyp |
Ref |
Expression |
1 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ) |
2 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
3 |
1 2
|
xchbinx |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
4 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
5 |
3 4
|
bitr4i |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
6 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
7 |
6
|
nbn |
⊢ ( ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
9 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
10 |
9
|
nbn |
⊢ ( ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
12 |
5 8 11
|
3bitr3i |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
13 |
|
abeq1 |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
14 |
|
abeq1 |
⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
15 |
12 13 14
|
3bitr4i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
16 |
|
df-dm |
⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
17 |
16
|
eqeq1i |
⊢ ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ) |
18 |
|
dfrn2 |
⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
19 |
18
|
eqeq1i |
⊢ ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
20 |
15 17 19
|
3bitr4i |
⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |