| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ) |
| 2 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 3 |
1 2
|
xchbinx |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 4 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ¬ ∃ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 6 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 7 |
6
|
nbn |
⊢ ( ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑥 ¬ ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
| 9 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
| 10 |
9
|
nbn |
⊢ ( ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑦 ¬ ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 12 |
5 8 11
|
3bitr3i |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 13 |
|
eqabcb |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑥 ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ 𝑥 ∈ ∅ ) ) |
| 14 |
|
eqabcb |
⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑦 ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ 𝑦 ∈ ∅ ) ) |
| 15 |
12 13 14
|
3bitr4i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 16 |
|
df-dm |
⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
| 17 |
16
|
eqeq1i |
⊢ ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ) |
| 18 |
|
dfrn2 |
⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
| 19 |
18
|
eqeq1i |
⊢ ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 20 |
15 17 19
|
3bitr4i |
⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |