Metamath Proof Explorer


Theorem dmadjop

Description: A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjop ( 𝑇 ∈ dom adj𝑇 : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 dmadjss dom adj ⊆ ( ℋ ↑m ℋ )
2 1 sseli ( 𝑇 ∈ dom adj𝑇 ∈ ( ℋ ↑m ℋ ) )
3 ax-hilex ℋ ∈ V
4 3 3 elmap ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ )
5 2 4 sylib ( 𝑇 ∈ dom adj𝑇 : ℋ ⟶ ℋ )