Metamath Proof Explorer
		
		
		
		Description:  A member of the domain of the adjoint function is a Hilbert space
       operator.  (Contributed by NM, 15-Feb-2006)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | dmadjop | ⊢  ( 𝑇  ∈  dom  adjℎ  →  𝑇 :  ℋ ⟶  ℋ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmadjss | ⊢ dom  adjℎ  ⊆  (  ℋ  ↑m   ℋ ) | 
						
							| 2 | 1 | sseli | ⊢ ( 𝑇  ∈  dom  adjℎ  →  𝑇  ∈  (  ℋ  ↑m   ℋ ) ) | 
						
							| 3 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 4 | 3 3 | elmap | ⊢ ( 𝑇  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 5 | 2 4 | sylib | ⊢ ( 𝑇  ∈  dom  adjℎ  →  𝑇 :  ℋ ⟶  ℋ ) |