Metamath Proof Explorer


Theorem dmadjrn

Description: The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjrn ( 𝑇 ∈ dom adj → ( adj𝑇 ) ∈ dom adj )

Proof

Step Hyp Ref Expression
1 adj1o adj : dom adj1-1-onto→ dom adj
2 f1of ( adj : dom adj1-1-onto→ dom adj → adj : dom adj ⟶ dom adj )
3 1 2 ax-mp adj : dom adj ⟶ dom adj
4 3 ffvelrni ( 𝑇 ∈ dom adj → ( adj𝑇 ) ∈ dom adj )