| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmadjrn | 
							⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ )  | 
						
						
							| 2 | 
							
								
							 | 
							ax-hv0cl | 
							⊢ 0ℎ  ∈   ℋ  | 
						
						
							| 3 | 
							
								2
							 | 
							n0ii | 
							⊢ ¬   ℋ  =  ∅  | 
						
						
							| 4 | 
							
								
							 | 
							eqcom | 
							⊢ ( ∅  =   ℋ  ↔   ℋ  =  ∅ )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mtbir | 
							⊢ ¬  ∅  =   ℋ  | 
						
						
							| 6 | 
							
								
							 | 
							dm0 | 
							⊢ dom  ∅  =  ∅  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1i | 
							⊢ ( dom  ∅  =   ℋ  ↔  ∅  =   ℋ )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							mtbir | 
							⊢ ¬  dom  ∅  =   ℋ  | 
						
						
							| 9 | 
							
								
							 | 
							fdm | 
							⊢ ( ∅ :  ℋ ⟶  ℋ  →  dom  ∅  =   ℋ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mto | 
							⊢ ¬  ∅ :  ℋ ⟶  ℋ  | 
						
						
							| 11 | 
							
								
							 | 
							dmadjop | 
							⊢ ( ∅  ∈  dom  adjℎ  →  ∅ :  ℋ ⟶  ℋ )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mto | 
							⊢ ¬  ∅  ∈  dom  adjℎ  | 
						
						
							| 13 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  =  ∅ )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq1d | 
							⊢ ( ¬  𝑇  ∈  dom  adjℎ  →  ( ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ  ↔  ∅  ∈  dom  adjℎ ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							mtbiri | 
							⊢ ( ¬  𝑇  ∈  dom  adjℎ  →  ¬  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ )  | 
						
						
							| 16 | 
							
								15
							 | 
							con4i | 
							⊢ ( ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ  →  𝑇  ∈  dom  adjℎ )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							impbii | 
							⊢ ( 𝑇  ∈  dom  adjℎ  ↔  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ )  |