Metamath Proof Explorer


Theorem dmadjrnb

Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv .) (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjrnb ( 𝑇 ∈ dom adj ↔ ( adj𝑇 ) ∈ dom adj )

Proof

Step Hyp Ref Expression
1 dmadjrn ( 𝑇 ∈ dom adj → ( adj𝑇 ) ∈ dom adj )
2 ax-hv0cl 0 ∈ ℋ
3 2 n0ii ¬ ℋ = ∅
4 eqcom ( ∅ = ℋ ↔ ℋ = ∅ )
5 3 4 mtbir ¬ ∅ = ℋ
6 dm0 dom ∅ = ∅
7 6 eqeq1i ( dom ∅ = ℋ ↔ ∅ = ℋ )
8 5 7 mtbir ¬ dom ∅ = ℋ
9 fdm ( ∅ : ℋ ⟶ ℋ → dom ∅ = ℋ )
10 8 9 mto ¬ ∅ : ℋ ⟶ ℋ
11 dmadjop ( ∅ ∈ dom adj → ∅ : ℋ ⟶ ℋ )
12 10 11 mto ¬ ∅ ∈ dom adj
13 ndmfv ( ¬ 𝑇 ∈ dom adj → ( adj𝑇 ) = ∅ )
14 13 eleq1d ( ¬ 𝑇 ∈ dom adj → ( ( adj𝑇 ) ∈ dom adj ↔ ∅ ∈ dom adj ) )
15 12 14 mtbiri ( ¬ 𝑇 ∈ dom adj → ¬ ( adj𝑇 ) ∈ dom adj )
16 15 con4i ( ( adj𝑇 ) ∈ dom adj𝑇 ∈ dom adj )
17 1 16 impbii ( 𝑇 ∈ dom adj ↔ ( adj𝑇 ) ∈ dom adj )