Step |
Hyp |
Ref |
Expression |
1 |
|
dmadjrn |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
3 |
2
|
n0ii |
⊢ ¬ ℋ = ∅ |
4 |
|
eqcom |
⊢ ( ∅ = ℋ ↔ ℋ = ∅ ) |
5 |
3 4
|
mtbir |
⊢ ¬ ∅ = ℋ |
6 |
|
dm0 |
⊢ dom ∅ = ∅ |
7 |
6
|
eqeq1i |
⊢ ( dom ∅ = ℋ ↔ ∅ = ℋ ) |
8 |
5 7
|
mtbir |
⊢ ¬ dom ∅ = ℋ |
9 |
|
fdm |
⊢ ( ∅ : ℋ ⟶ ℋ → dom ∅ = ℋ ) |
10 |
8 9
|
mto |
⊢ ¬ ∅ : ℋ ⟶ ℋ |
11 |
|
dmadjop |
⊢ ( ∅ ∈ dom adjℎ → ∅ : ℋ ⟶ ℋ ) |
12 |
10 11
|
mto |
⊢ ¬ ∅ ∈ dom adjℎ |
13 |
|
ndmfv |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ∅ ) |
14 |
13
|
eleq1d |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ↔ ∅ ∈ dom adjℎ ) ) |
15 |
12 14
|
mtbiri |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ¬ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
16 |
15
|
con4i |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → 𝑇 ∈ dom adjℎ ) |
17 |
1 16
|
impbii |
⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |