| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfadj2 | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 2 |  | 3anass | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 3 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 4 | 3 3 | elmap | ⊢ ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 6 | 2 5 | bitr4i | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 7 | 6 | opabbii | ⊢ { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) }  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) } | 
						
							| 8 | 1 7 | eqtri | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) } | 
						
							| 9 | 8 | dmeqi | ⊢ dom  adjℎ  =  dom  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) } | 
						
							| 10 |  | dmopabss | ⊢ dom  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) }  ⊆  (  ℋ  ↑m   ℋ ) | 
						
							| 11 | 9 10 | eqsstri | ⊢ dom  adjℎ  ⊆  (  ℋ  ↑m   ℋ ) |