Metamath Proof Explorer


Theorem dmadjss

Description: The domain of the adjoint function is a subset of the maps from ~H to ~H . (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjss dom adj ⊆ ( ℋ ↑m ℋ )

Proof

Step Hyp Ref Expression
1 dfadj2 adj = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) }
2 3anass ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
3 ax-hilex ℋ ∈ V
4 3 3 elmap ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℋ )
5 4 anbi1i ( ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
6 2 5 bitr4i ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
7 6 opabbii { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) } = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) }
8 1 7 eqtri adj = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) }
9 8 dmeqi dom adj = dom { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) }
10 dmopabss dom { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) } ⊆ ( ℋ ↑m ℋ )
11 9 10 eqsstri dom adj ⊆ ( ℋ ↑m ℋ )