| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmatid.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							dmatid.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							dmatid.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							dmatid.d | 
							⊢ 𝐷  =  ( 𝑁  DMat  𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							dmatcrng.c | 
							⊢ 𝐶  =  ( 𝐴  ↾s  𝐷 )  | 
						
						
							| 6 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 7 | 
							
								1 2 3 4
							 | 
							dmatsrng | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) )  | 
						
						
							| 9 | 
							
								5
							 | 
							subrgring | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐶  ∈  Ring )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐶  ∈  Ring )  | 
						
						
							| 11 | 
							
								
							 | 
							simp1lr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑅  ∈  CRing )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑎  ∈  𝑁 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑏  ∈  𝑁 )  | 
						
						
							| 16 | 
							
								1 13 3 4
							 | 
							dmatmat | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑥  ∈  𝐷  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imp | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantrr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑥  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 20 | 
							
								1 12 13 14 15 19
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 𝑥 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 21 | 
							
								1 13 3 4
							 | 
							dmatmat | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑦  ∈  𝐷  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							imp | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantrl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑦  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 25 | 
							
								1 12 13 14 15 24
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 𝑦 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 27 | 
							
								12 26
							 | 
							crngcom | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑎 𝑥 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑎 𝑦 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) )  =  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) )  | 
						
						
							| 28 | 
							
								11 20 25 27
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) )  =  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ifeq1d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  )  =  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							mpoeq3dva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) )  | 
						
						
							| 31 | 
							
								6
							 | 
							anim2i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 32 | 
							
								1 2 3 4
							 | 
							dmatmul | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylan | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							pm3.22 | 
							⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  | 
						
						
							| 35 | 
							
								1 2 3 4
							 | 
							dmatmul | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  →  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) )  | 
						
						
							| 36 | 
							
								31 34 35
							 | 
							syl2an | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) )  | 
						
						
							| 37 | 
							
								30 33 36
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralrimivva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ancoms | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) )  | 
						
						
							| 40 | 
							
								5
							 | 
							subrgbas | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐷  =  ( Base ‘ 𝐶 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							eqcomd | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( Base ‘ 𝐶 )  =  𝐷 )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 )  | 
						
						
							| 43 | 
							
								5 42
							 | 
							ressmulr | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐶 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							eqcomd | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐴 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							oveqd | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) )  | 
						
						
							| 46 | 
							
								44
							 | 
							oveqd | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							eqeq12d | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) )  | 
						
						
							| 48 | 
							
								41 47
							 | 
							raleqbidv | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) )  | 
						
						
							| 49 | 
							
								41 48
							 | 
							raleqbidv | 
							⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) )  | 
						
						
							| 50 | 
							
								8 49
							 | 
							syl | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) )  | 
						
						
							| 51 | 
							
								39 50
							 | 
							mpbird | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 53 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							iscrng2 | 
							⊢ ( 𝐶  ∈  CRing  ↔  ( 𝐶  ∈  Ring  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ) )  | 
						
						
							| 55 | 
							
								10 51 54
							 | 
							sylanbrc | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐶  ∈  CRing )  |