Metamath Proof Explorer


Theorem dmatelnd

Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
dmatid.b 𝐵 = ( Base ‘ 𝐴 )
dmatid.0 0 = ( 0g𝑅 )
dmatid.d 𝐷 = ( 𝑁 DMat 𝑅 )
Assertion dmatelnd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷 ) ∧ ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) ) → ( 𝐼 𝑋 𝐽 ) = 0 )

Proof

Step Hyp Ref Expression
1 dmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 dmatid.b 𝐵 = ( Base ‘ 𝐴 )
3 dmatid.0 0 = ( 0g𝑅 )
4 dmatid.d 𝐷 = ( 𝑁 DMat 𝑅 )
5 1 2 3 4 dmatel ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋𝐷 ↔ ( 𝑋𝐵 ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ) ) )
6 neeq1 ( 𝑖 = 𝐼 → ( 𝑖𝑗𝐼𝑗 ) )
7 oveq1 ( 𝑖 = 𝐼 → ( 𝑖 𝑋 𝑗 ) = ( 𝐼 𝑋 𝑗 ) )
8 7 eqeq1d ( 𝑖 = 𝐼 → ( ( 𝑖 𝑋 𝑗 ) = 0 ↔ ( 𝐼 𝑋 𝑗 ) = 0 ) )
9 6 8 imbi12d ( 𝑖 = 𝐼 → ( ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ↔ ( 𝐼𝑗 → ( 𝐼 𝑋 𝑗 ) = 0 ) ) )
10 neeq2 ( 𝑗 = 𝐽 → ( 𝐼𝑗𝐼𝐽 ) )
11 oveq2 ( 𝑗 = 𝐽 → ( 𝐼 𝑋 𝑗 ) = ( 𝐼 𝑋 𝐽 ) )
12 11 eqeq1d ( 𝑗 = 𝐽 → ( ( 𝐼 𝑋 𝑗 ) = 0 ↔ ( 𝐼 𝑋 𝐽 ) = 0 ) )
13 10 12 imbi12d ( 𝑗 = 𝐽 → ( ( 𝐼𝑗 → ( 𝐼 𝑋 𝑗 ) = 0 ) ↔ ( 𝐼𝐽 → ( 𝐼 𝑋 𝐽 ) = 0 ) ) )
14 9 13 rspc2v ( ( 𝐼𝑁𝐽𝑁 ) → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼𝐽 → ( 𝐼 𝑋 𝐽 ) = 0 ) ) )
15 14 com23 ( ( 𝐼𝑁𝐽𝑁 ) → ( 𝐼𝐽 → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) )
16 15 3impia ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) )
17 16 com12 ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) )
18 17 2a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋𝐵 → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) )
19 18 impd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑋𝐵 ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ) → ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) )
20 5 19 sylbid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋𝐷 → ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) )
21 20 3impia ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷 ) → ( ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) )
22 21 imp ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷 ) ∧ ( 𝐼𝑁𝐽𝑁𝐼𝐽 ) ) → ( 𝐼 𝑋 𝐽 ) = 0 )