| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
dmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
dmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
dmatid.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
| 5 |
1 2 3 4
|
dmatel |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ) ) ) |
| 6 |
|
neeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ≠ 𝑗 ↔ 𝐼 ≠ 𝑗 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 𝑋 𝑗 ) = ( 𝐼 𝑋 𝑗 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 𝑋 𝑗 ) = 0 ↔ ( 𝐼 𝑋 𝑗 ) = 0 ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ↔ ( 𝐼 ≠ 𝑗 → ( 𝐼 𝑋 𝑗 ) = 0 ) ) ) |
| 10 |
|
neeq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 ≠ 𝑗 ↔ 𝐼 ≠ 𝐽 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 𝑋 𝑗 ) = ( 𝐼 𝑋 𝐽 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 𝑋 𝑗 ) = 0 ↔ ( 𝐼 𝑋 𝐽 ) = 0 ) ) |
| 13 |
10 12
|
imbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 ≠ 𝑗 → ( 𝐼 𝑋 𝑗 ) = 0 ) ↔ ( 𝐼 ≠ 𝐽 → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) |
| 14 |
9 13
|
rspc2v |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼 ≠ 𝐽 → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) |
| 15 |
14
|
com23 |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 ≠ 𝐽 → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) |
| 16 |
15
|
3impia |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) |
| 17 |
16
|
com12 |
⊢ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) |
| 18 |
17
|
2a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) ) |
| 19 |
18
|
impd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑋 𝑗 ) = 0 ) ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) |
| 20 |
5 19
|
sylbid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 ∈ 𝐷 → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) ) |
| 21 |
20
|
3impia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 𝑋 𝐽 ) = 0 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽 ) ) → ( 𝐼 𝑋 𝐽 ) = 0 ) |