Metamath Proof Explorer


Theorem dmatmat

Description: An N x N diagonal matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
dmatval.b 𝐵 = ( Base ‘ 𝐴 )
dmatval.0 0 = ( 0g𝑅 )
dmatval.d 𝐷 = ( 𝑁 DMat 𝑅 )
Assertion dmatmat ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝐷𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 dmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 dmatval.b 𝐵 = ( Base ‘ 𝐴 )
3 dmatval.0 0 = ( 0g𝑅 )
4 dmatval.d 𝐷 = ( 𝑁 DMat 𝑅 )
5 1 2 3 4 dmatel ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝐷 ↔ ( 𝑀𝐵 ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ) )
6 simpl ( ( 𝑀𝐵 ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) → 𝑀𝐵 )
7 5 6 syl6bi ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝐷𝑀𝐵 ) )