| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
dmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
dmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
dmatid.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
| 5 |
|
oveq |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) → ( ( 𝑖 𝑚 𝑗 ) = 0 ↔ ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) → ( ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ↔ ( 𝑖 ≠ 𝑗 → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) ) ) |
| 8 |
7
|
2ralbidv |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 𝑁 ∈ Fin ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 𝑅 ∈ Ring ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 14 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑥 ∈ 𝑁 ) |
| 15 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑦 ∈ 𝑁 ) |
| 16 |
1 13 3 4
|
dmatmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 ∈ 𝐷 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑋 ∈ 𝐷 ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 18 |
17
|
adantrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 20 |
1 9 13 14 15 19
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑥 𝑋 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
1 13 3 4
|
dmatmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑌 ∈ 𝐷 → 𝑌 ∈ ( Base ‘ 𝐴 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑌 ∈ 𝐷 ) → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 23 |
22
|
adantrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
1 9 13 14 15 24
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑥 𝑌 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 27 |
9 26
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 𝑋 𝑦 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 𝑌 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
12 20 25 27
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
9 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
28 32
|
ifcld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
1 9 2 10 11 33
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) ∈ 𝐵 ) |
| 35 |
|
eqidd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) ) |
| 36 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑥 = 𝑦 ↔ 𝑖 = 𝑗 ) ) |
| 37 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑥 𝑋 𝑦 ) = ( 𝑖 𝑋 𝑗 ) ) |
| 38 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑥 𝑌 𝑦 ) = ( 𝑖 𝑌 𝑗 ) ) |
| 39 |
37 38
|
oveq12d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) = ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ) |
| 40 |
36 39
|
ifbieq1d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) = if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) ) → if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) = if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) ) |
| 42 |
|
simplrl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝑁 ) |
| 43 |
|
simplrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝑁 ) |
| 44 |
|
ovex |
⊢ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ∈ V |
| 45 |
3
|
fvexi |
⊢ 0 ∈ V |
| 46 |
44 45
|
ifex |
⊢ if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) ∈ V |
| 47 |
46
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) ∈ V ) |
| 48 |
35 41 42 43 47
|
ovmpod |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) ) |
| 49 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) = 0 ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → if ( 𝑖 = 𝑗 , ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) , 0 ) = 0 ) |
| 51 |
48 50
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) |
| 52 |
51
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) ) |
| 53 |
52
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) 𝑗 ) = 0 ) ) |
| 54 |
8 34 53
|
elrabd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) ∈ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
| 55 |
1 2 3 4
|
dmatmul |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → ( 𝑋 ( .r ‘ 𝐴 ) 𝑌 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑦 , ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) , 0 ) ) ) |
| 56 |
1 2 3 4
|
dmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → 𝐷 = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
| 58 |
54 55 57
|
3eltr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) → ( 𝑋 ( .r ‘ 𝐴 ) 𝑌 ) ∈ 𝐷 ) |