Step |
Hyp |
Ref |
Expression |
1 |
|
dmatval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
dmatval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
dmatval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
dmatval.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
5 |
|
df-dmat |
⊢ DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |
6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) ) |
7 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
9 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
10 |
2 9
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
11 |
8 10
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
12 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = 0 ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ↔ ( 𝑖 𝑚 𝑗 ) = 0 ) ) |
17 |
16
|
imbi2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
18 |
12 17
|
raleqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
19 |
12 18
|
raleqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
20 |
11 19
|
rabeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
22 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
23 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
24 |
23
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ V ) |
25 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
26 |
|
rabexg |
⊢ ( 𝐵 ∈ V → { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ∈ V ) |
27 |
25 26
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ∈ V ) |
28 |
6 21 22 24 27
|
ovmpod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 DMat 𝑅 ) = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
29 |
4 28
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐷 = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |