Metamath Proof Explorer


Theorem dmatval

Description: The set of N x N diagonal matrices over (a ring) R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
dmatval.b 𝐵 = ( Base ‘ 𝐴 )
dmatval.0 0 = ( 0g𝑅 )
dmatval.d 𝐷 = ( 𝑁 DMat 𝑅 )
Assertion dmatval ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝐷 = { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } )

Proof

Step Hyp Ref Expression
1 dmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 dmatval.b 𝐵 = ( Base ‘ 𝐴 )
3 dmatval.0 0 = ( 0g𝑅 )
4 dmatval.d 𝐷 = ( 𝑁 DMat 𝑅 )
5 df-dmat DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )
6 5 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } ) )
7 oveq12 ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) )
8 7 fveq2d ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) )
9 1 fveq2i ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
10 2 9 eqtri 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
11 8 10 eqtr4di ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 )
12 simpl ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → 𝑛 = 𝑁 )
13 fveq2 ( 𝑟 = 𝑅 → ( 0g𝑟 ) = ( 0g𝑅 ) )
14 13 3 eqtr4di ( 𝑟 = 𝑅 → ( 0g𝑟 ) = 0 )
15 14 adantl ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( 0g𝑟 ) = 0 )
16 15 eqeq2d ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ↔ ( 𝑖 𝑚 𝑗 ) = 0 ) )
17 16 imbi2d ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) ↔ ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) )
18 12 17 raleqbidv ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( ∀ 𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) ↔ ∀ 𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) )
19 12 18 raleqbidv ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) ↔ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) )
20 11 19 rabeqbidv ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } = { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } )
21 20 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) ∧ ( 𝑛 = 𝑁𝑟 = 𝑅 ) ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } = { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } )
22 simpl ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑁 ∈ Fin )
23 elex ( 𝑅𝑉𝑅 ∈ V )
24 23 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑅 ∈ V )
25 2 fvexi 𝐵 ∈ V
26 rabexg ( 𝐵 ∈ V → { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ∈ V )
27 25 26 mp1i ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ∈ V )
28 6 21 22 24 27 ovmpod ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑁 DMat 𝑅 ) = { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } )
29 4 28 eqtrid ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝐷 = { 𝑚𝐵 ∣ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } )