Description: The domain of a composition. Exercise 27 of Enderton p. 53. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmco | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 “ dom 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfdm4 | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ran ◡ ( 𝐴 ∘ 𝐵 ) | |
| 2 | cnvco | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) | |
| 3 | 2 | rneqi | ⊢ ran ◡ ( 𝐴 ∘ 𝐵 ) = ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) | 
| 4 | rnco2 | ⊢ ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ 𝐵 “ ran ◡ 𝐴 ) | |
| 5 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
| 6 | 5 | imaeq2i | ⊢ ( ◡ 𝐵 “ dom 𝐴 ) = ( ◡ 𝐵 “ ran ◡ 𝐴 ) | 
| 7 | 4 6 | eqtr4i | ⊢ ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ 𝐵 “ dom 𝐴 ) | 
| 8 | 1 3 7 | 3eqtri | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 “ dom 𝐴 ) |