Metamath Proof Explorer


Theorem dmcosseq

Description: Domain of a composition. (Contributed by NM, 28-May-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)

Ref Expression
Assertion dmcosseq ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴𝐵 ) = dom 𝐵 )

Proof

Step Hyp Ref Expression
1 dmcoss dom ( 𝐴𝐵 ) ⊆ dom 𝐵
2 1 a1i ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴𝐵 ) ⊆ dom 𝐵 )
3 ssel ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴 ) )
4 vex 𝑦 ∈ V
5 4 elrn ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑦 )
6 4 eldm ( 𝑦 ∈ dom 𝐴 ↔ ∃ 𝑧 𝑦 𝐴 𝑧 )
7 5 6 imbi12i ( ( 𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) )
8 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐵 𝑦𝑧 𝐵 𝑦 ) )
9 8 19.8aw ( 𝑥 𝐵 𝑦 → ∃ 𝑥 𝑥 𝐵 𝑦 )
10 9 imim1i ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) )
11 pm3.2 ( 𝑥 𝐵 𝑦 → ( 𝑦 𝐴 𝑧 → ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
12 11 eximdv ( 𝑥 𝐵 𝑦 → ( ∃ 𝑧 𝑦 𝐴 𝑧 → ∃ 𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
13 10 12 sylcom ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
14 7 13 sylbi ( ( 𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
15 3 14 syl ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
16 15 eximdv ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑦𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
17 breq2 ( 𝑦 = 𝑤 → ( 𝑥 𝐵 𝑦𝑥 𝐵 𝑤 ) )
18 breq1 ( 𝑦 = 𝑤 → ( 𝑦 𝐴 𝑧𝑤 𝐴 𝑧 ) )
19 17 18 anbi12d ( 𝑦 = 𝑤 → ( ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑤𝑤 𝐴 𝑧 ) ) )
20 19 excomimw ( ∃ 𝑦𝑧 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) → ∃ 𝑧𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) )
21 16 20 syl6 ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) ) )
22 vex 𝑥 ∈ V
23 vex 𝑧 ∈ V
24 22 23 opelco ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) )
25 24 exbii ( ∃ 𝑧𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑧𝑦 ( 𝑥 𝐵 𝑦𝑦 𝐴 𝑧 ) )
26 21 25 imbitrrdi ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ) )
27 22 eldm ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 )
28 22 eldm2 ( 𝑥 ∈ dom ( 𝐴𝐵 ) ↔ ∃ 𝑧𝑥 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) )
29 26 27 28 3imtr4g ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 ∈ dom 𝐵𝑥 ∈ dom ( 𝐴𝐵 ) ) )
30 29 ssrdv ( ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom ( 𝐴𝐵 ) )
31 2 30 eqssd ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴𝐵 ) = dom 𝐵 )