| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmcoss |
⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |
| 2 |
1
|
a1i |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ) |
| 3 |
|
ssel |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4
|
elrn |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑦 ) |
| 6 |
4
|
eldm |
⊢ ( 𝑦 ∈ dom 𝐴 ↔ ∃ 𝑧 𝑦 𝐴 𝑧 ) |
| 7 |
5 6
|
imbi12i |
⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
| 8 |
|
19.8a |
⊢ ( 𝑥 𝐵 𝑦 → ∃ 𝑥 𝑥 𝐵 𝑦 ) |
| 9 |
8
|
imim1i |
⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
| 10 |
|
pm3.2 |
⊢ ( 𝑥 𝐵 𝑦 → ( 𝑦 𝐴 𝑧 → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 11 |
10
|
eximdv |
⊢ ( 𝑥 𝐵 𝑦 → ( ∃ 𝑧 𝑦 𝐴 𝑧 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 12 |
9 11
|
sylcom |
⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 13 |
7 12
|
sylbi |
⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 14 |
3 13
|
syl |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 15 |
14
|
eximdv |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 16 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝑤 ) ) |
| 17 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐴 𝑧 ↔ 𝑤 𝐴 𝑧 ) ) |
| 18 |
16 17
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) ) |
| 19 |
18
|
excomimw |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 20 |
15 19
|
syl6 |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 21 |
|
vex |
⊢ 𝑥 ∈ V |
| 22 |
|
vex |
⊢ 𝑧 ∈ V |
| 23 |
21 22
|
opelco |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 25 |
20 24
|
imbitrrdi |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) ) |
| 26 |
21
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 27 |
21
|
eldm2 |
⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
| 28 |
25 26 27
|
3imtr4g |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 ∈ dom 𝐵 → 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ) ) |
| 29 |
28
|
ssrdv |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom ( 𝐴 ∘ 𝐵 ) ) |
| 30 |
2 29
|
eqssd |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) = dom 𝐵 ) |