| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmresv | ⊢ dom  ( 𝐴  ↾  V )  =  dom  𝐴 | 
						
							| 2 |  | resss | ⊢ ( 𝐴  ↾  V )  ⊆  𝐴 | 
						
							| 3 |  | ctex | ⊢ ( 𝐴  ≼  ω  →  𝐴  ∈  V ) | 
						
							| 4 |  | ssexg | ⊢ ( ( ( 𝐴  ↾  V )  ⊆  𝐴  ∧  𝐴  ∈  V )  →  ( 𝐴  ↾  V )  ∈  V ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( 𝐴  ≼  ω  →  ( 𝐴  ↾  V )  ∈  V ) | 
						
							| 6 |  | fvex | ⊢ ( 1st  ‘ 𝑥 )  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) | 
						
							| 8 | 6 7 | fnmpti | ⊢ ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) )  Fn  ( 𝐴  ↾  V ) | 
						
							| 9 |  | dffn4 | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) )  Fn  ( 𝐴  ↾  V )  ↔  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) | 
						
							| 11 |  | relres | ⊢ Rel  ( 𝐴  ↾  V ) | 
						
							| 12 |  | reldm | ⊢ ( Rel  ( 𝐴  ↾  V )  →  dom  ( 𝐴  ↾  V )  =  ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) ) | 
						
							| 13 |  | foeq3 | ⊢ ( dom  ( 𝐴  ↾  V )  =  ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) )  →  ( ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ dom  ( 𝐴  ↾  V )  ↔  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 11 12 13 | mp2b | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ dom  ( 𝐴  ↾  V )  ↔  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ ran  ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) ) | 
						
							| 15 | 10 14 | mpbir | ⊢ ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ dom  ( 𝐴  ↾  V ) | 
						
							| 16 |  | fodomg | ⊢ ( ( 𝐴  ↾  V )  ∈  V  →  ( ( 𝑥  ∈  ( 𝐴  ↾  V )  ↦  ( 1st  ‘ 𝑥 ) ) : ( 𝐴  ↾  V ) –onto→ dom  ( 𝐴  ↾  V )  →  dom  ( 𝐴  ↾  V )  ≼  ( 𝐴  ↾  V ) ) ) | 
						
							| 17 | 5 15 16 | mpisyl | ⊢ ( 𝐴  ≼  ω  →  dom  ( 𝐴  ↾  V )  ≼  ( 𝐴  ↾  V ) ) | 
						
							| 18 |  | ssdomg | ⊢ ( 𝐴  ∈  V  →  ( ( 𝐴  ↾  V )  ⊆  𝐴  →  ( 𝐴  ↾  V )  ≼  𝐴 ) ) | 
						
							| 19 | 3 2 18 | mpisyl | ⊢ ( 𝐴  ≼  ω  →  ( 𝐴  ↾  V )  ≼  𝐴 ) | 
						
							| 20 |  | domtr | ⊢ ( ( ( 𝐴  ↾  V )  ≼  𝐴  ∧  𝐴  ≼  ω )  →  ( 𝐴  ↾  V )  ≼  ω ) | 
						
							| 21 | 19 20 | mpancom | ⊢ ( 𝐴  ≼  ω  →  ( 𝐴  ↾  V )  ≼  ω ) | 
						
							| 22 |  | domtr | ⊢ ( ( dom  ( 𝐴  ↾  V )  ≼  ( 𝐴  ↾  V )  ∧  ( 𝐴  ↾  V )  ≼  ω )  →  dom  ( 𝐴  ↾  V )  ≼  ω ) | 
						
							| 23 | 17 21 22 | syl2anc | ⊢ ( 𝐴  ≼  ω  →  dom  ( 𝐴  ↾  V )  ≼  ω ) | 
						
							| 24 | 1 23 | eqbrtrrid | ⊢ ( 𝐴  ≼  ω  →  dom  𝐴  ≼  ω ) |