Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ Cℋ ↔ 𝐴 ∈ Cℋ ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ) ) |
3 |
|
ineq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝐴 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∨ℋ 𝑧 ) = ( 𝐴 ∨ℋ 𝑧 ) ) |
6 |
5
|
ineq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) ↔ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) ) ↔ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ) ) |
10 |
2 9
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ) ) ) |
11 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ Cℋ ↔ 𝐵 ∈ Cℋ ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) ) |
13 |
|
sseq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑥 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∨ℋ 𝑧 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
16 |
15
|
ineq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ↔ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ↔ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
20 |
12 19
|
anbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝑧 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
21 |
|
df-dmd |
⊢ 𝑀ℋ* = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝑧 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∨ℋ 𝑧 ) ) ) ) } |
22 |
10 20 21
|
brabg |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
23 |
22
|
bianabs |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |