Description: Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| divdiv23d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | dmdcan2d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐶 ) ) = ( 𝐴 / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | divdiv23d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 6 | 1 2 4 | divcld | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 7 | 2 3 5 | divcld | ⊢ ( 𝜑 → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 8 | 6 7 | mulcomd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐶 ) ) = ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) ) |
| 9 | 1 2 3 4 5 | dmdcand | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐶 ) ) |
| 10 | 8 9 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐶 ) ) = ( 𝐴 / 𝐶 ) ) |