Metamath Proof Explorer


Theorem dmdi

Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdi ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀* 𝐵𝐵𝐶 ) ) → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dmdbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( 𝐵𝑥 → ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ) ) )
2 1 biimpd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 → ∀ 𝑥C ( 𝐵𝑥 → ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ) ) )
3 sseq2 ( 𝑥 = 𝐶 → ( 𝐵𝑥𝐵𝐶 ) )
4 ineq1 ( 𝑥 = 𝐶 → ( 𝑥𝐴 ) = ( 𝐶𝐴 ) )
5 4 oveq1d ( 𝑥 = 𝐶 → ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( ( 𝐶𝐴 ) ∨ 𝐵 ) )
6 ineq1 ( 𝑥 = 𝐶 → ( 𝑥 ∩ ( 𝐴 𝐵 ) ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) )
7 5 6 eqeq12d ( 𝑥 = 𝐶 → ( ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ↔ ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ) )
8 3 7 imbi12d ( 𝑥 = 𝐶 → ( ( 𝐵𝑥 → ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ) ↔ ( 𝐵𝐶 → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ) ) )
9 8 rspcv ( 𝐶C → ( ∀ 𝑥C ( 𝐵𝑥 → ( ( 𝑥𝐴 ) ∨ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 𝐵 ) ) ) → ( 𝐵𝐶 → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ) ) )
10 2 9 sylan9 ( ( ( 𝐴C𝐵C ) ∧ 𝐶C ) → ( 𝐴 𝑀* 𝐵 → ( 𝐵𝐶 → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ) ) )
11 10 3impa ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝑀* 𝐵 → ( 𝐵𝐶 → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ) ) )
12 11 imp32 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀* 𝐵𝐵𝐶 ) ) → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) )