Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
2 |
1
|
biimpd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 → ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
3 |
|
sseq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐶 ) ) |
4 |
|
ineq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∩ 𝐴 ) = ( 𝐶 ∩ 𝐴 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
6 |
|
ineq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
8 |
3 7
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ↔ ( 𝐵 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
9 |
8
|
rspcv |
⊢ ( 𝐶 ∈ Cℋ → ( ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝐵 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
10 |
2 9
|
sylan9 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 → ( 𝐵 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
11 |
10
|
3impa |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 → ( 𝐵 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
12 |
11
|
imp32 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |