Metamath Proof Explorer


Theorem dmdi2

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi2 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀* 𝐵𝐵𝐶 ) ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝐶𝐴 ) ∨ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dmdi ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀* 𝐵𝐵𝐶 ) ) → ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) )
2 eqimss2 ( ( ( 𝐶𝐴 ) ∨ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 𝐵 ) ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝐶𝐴 ) ∨ 𝐵 ) )
3 1 2 syl ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀* 𝐵𝐵𝐶 ) ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( 𝐶𝐴 ) ∨ 𝐵 ) )