Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dmdi2 | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdi | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
2 | eqimss2 | ⊢ ( ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ( 𝐶 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |