Metamath Proof Explorer


Theorem dmdi4

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi4 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝑀* 𝐵 → ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dmdbr4 ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
2 1 biimpd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 → ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
3 oveq1 ( 𝑥 = 𝐶 → ( 𝑥 𝐵 ) = ( 𝐶 𝐵 ) )
4 3 ineq1d ( 𝑥 = 𝐶 → ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) = ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) )
5 3 ineq1d ( 𝑥 = 𝐶 → ( ( 𝑥 𝐵 ) ∩ 𝐴 ) = ( ( 𝐶 𝐵 ) ∩ 𝐴 ) )
6 5 oveq1d ( 𝑥 = 𝐶 → ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) = ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) )
7 4 6 sseq12d ( 𝑥 = 𝐶 → ( ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ↔ ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
8 7 rspcv ( 𝐶C → ( ∀ 𝑥C ( ( 𝑥 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝑥 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) → ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
9 2 8 sylan9 ( ( ( 𝐴C𝐵C ) ∧ 𝐶C ) → ( 𝐴 𝑀* 𝐵 → ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )
10 9 3impa ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝑀* 𝐵 → ( ( 𝐶 𝐵 ) ∩ ( 𝐴 𝐵 ) ) ⊆ ( ( ( 𝐶 𝐵 ) ∩ 𝐴 ) ∨ 𝐵 ) ) )