Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
3 |
2
|
ineq1d |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
5 |
3 4
|
eqeq12d |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ↔ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
6 |
1 5
|
imbi12d |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) → ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
8 |
|
choccl |
⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) |
9 |
8
|
imim1i |
⊢ ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( 𝑥 ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
10 |
9
|
com12 |
⊢ ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
12 |
|
chsscon3 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ⊆ 𝑥 ↔ ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
13 |
12
|
biimpd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ⊆ 𝑥 → ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ⊆ 𝑥 → ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
15 |
|
fveq2 |
⊢ ( ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
16 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
17 |
|
chjcl |
⊢ ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) |
18 |
8 16 17
|
syl2an |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) |
19 |
|
chdmm3 |
⊢ ( ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) ) |
20 |
18 19
|
sylan |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) ) |
21 |
|
chdmj4 |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑥 ∩ 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑥 ∩ 𝐴 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
24 |
20 23
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
25 |
24
|
anasss |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
26 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
27 |
|
chincl |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
28 |
16 26 27
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
29 |
|
chdmj2 |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
30 |
28 29
|
sylan2 |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
31 |
|
chdmm4 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
33 |
32
|
ineq2d |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( 𝑥 ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
34 |
30 33
|
eqtrd |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
35 |
25 34
|
eqeq12d |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
36 |
35
|
ancoms |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
37 |
15 36
|
syl5ib |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
38 |
14 37
|
imim12d |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) → ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
39 |
11 38
|
syld |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
40 |
39
|
ex |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
41 |
40
|
com23 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ( ⊥ ‘ 𝑥 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝑥 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( 𝑥 ∈ Cℋ → ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
42 |
7 41
|
syl5 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) → ( 𝑥 ∈ Cℋ → ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
43 |
42
|
ralrimdv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) → ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
44 |
|
sseq2 |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) ) ) |
45 |
|
ineq1 |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝑥 ∩ 𝐴 ) = ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) |
47 |
|
ineq1 |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
48 |
46 47
|
eqeq12d |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
49 |
44 48
|
imbi12d |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ↔ ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
50 |
49
|
rspccv |
⊢ ( ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
51 |
|
choccl |
⊢ ( 𝑦 ∈ Cℋ → ( ⊥ ‘ 𝑦 ) ∈ Cℋ ) |
52 |
51
|
imim1i |
⊢ ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝑦 ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
53 |
52
|
com12 |
⊢ ( 𝑦 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
55 |
|
chsscon2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) ↔ 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
56 |
55
|
biimprd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) ) ) |
57 |
56
|
adantll |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) ) ) |
58 |
|
fveq2 |
⊢ ( ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
59 |
|
chincl |
⊢ ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∈ Cℋ ) |
60 |
51 59
|
sylan |
⊢ ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∈ Cℋ ) |
61 |
|
chdmj1 |
⊢ ( ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
62 |
60 61
|
sylan |
⊢ ( ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
63 |
|
chdmm2 |
⊢ ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) = ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) = ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
65 |
64
|
ineq1d |
⊢ ( ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
66 |
62 65
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
67 |
66
|
anasss |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
68 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
69 |
|
chdmm2 |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝑦 ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
70 |
68 69
|
sylan2 |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝑦 ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
71 |
|
chdmj1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
73 |
72
|
oveq2d |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( 𝑦 ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
74 |
70 73
|
eqtrd |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
75 |
67 74
|
eqeq12d |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ↔ ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
76 |
75
|
ancoms |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ⊥ ‘ ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ↔ ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
77 |
58 76
|
syl5ib |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
78 |
57 77
|
imim12d |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
79 |
54 78
|
syld |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
80 |
79
|
ex |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑦 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) ) |
81 |
80
|
com23 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ → ( 𝐵 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( ⊥ ‘ 𝑦 ) ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ 𝑦 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( 𝑦 ∈ Cℋ → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) ) |
82 |
50 81
|
syl5 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝑦 ∈ Cℋ → ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) ) |
83 |
82
|
ralrimdv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
84 |
43 83
|
impbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
85 |
|
mdbr |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
86 |
16 26 85
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ Cℋ ( 𝑦 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝑦 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑦 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
87 |
|
dmdbr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝐵 ⊆ 𝑥 → ( ( 𝑥 ∩ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝑥 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
88 |
84 86 87
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |