Step |
Hyp |
Ref |
Expression |
1 |
|
dmdprd.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
2 |
|
dmdprd.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
dmdprd.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
dmdprdd.1 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
5 |
|
dmdprdd.2 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
dmdprdd.3 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
dmdprdd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
8 |
|
dmdprdd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { 0 } ) |
9 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) ) |
10 |
|
necom |
⊢ ( 𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) |
12 |
9 11
|
bitri |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) |
13 |
7
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 → ( 𝑦 ∈ 𝐼 → ( 𝑥 ≠ 𝑦 → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
14 |
13
|
imp4b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
15 |
12 14
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
16 |
15
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
17 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
2
|
subg0cl |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ‘ 𝑥 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( 𝑆 ‘ 𝑥 ) ) |
20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
22 |
21
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
23 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
24 |
20 22 23
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
25 |
|
imassrn |
⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 |
26 |
6
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
28 |
25 27
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
29 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
30 |
24 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
31 |
28 30
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
32 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
33 |
31 32
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
34 |
3
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
35 |
24 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
36 |
2
|
subg0cl |
⊢ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
38 |
19 37
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
39 |
38
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 0 } ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
40 |
8 39
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
41 |
16 40
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
43 |
6
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
44 |
1 2 3
|
dmdprd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
45 |
5 43 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
46 |
4 6 42 45
|
mpbir3and |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |