| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdsplit.2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdsplit.i | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdsplit.u | 
							⊢ ( 𝜑  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmdprdsplit.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							dmdprdsplit.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 7 | 
							
								1
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 9 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝐶  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 10 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sseqtrrid | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐶  ⊆  𝐼 )  | 
						
						
							| 12 | 
							
								6 8 11
							 | 
							dprdres | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ssun2 | 
							⊢ 𝐷  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 15 | 
							
								14 10
							 | 
							sseqtrrid | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐷  ⊆  𝐼 )  | 
						
						
							| 16 | 
							
								6 8 15
							 | 
							dprdres | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 20 | 
							
								6 8 11 15 19 4
							 | 
							dprdcntz2 | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 21 | 
							
								6 8 11 15 19 5
							 | 
							dprddisj2 | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  𝐺 dom   DProd  𝑆 )  →  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 24 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 25 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr1l | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr1r | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } )  | 
						
						
							| 30 | 
							
								23 24 25 4 5 26 27 28 29
							 | 
							dmdprdsplit2 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  ↔  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } ) ) )  |