| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdsplit.2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdsplit.i | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdsplit.u | 
							⊢ ( 𝜑  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmdprdsplit.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							dmdprdsplit.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							dmdprdsplit2.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dmdprdsplit2.2 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							dmdprdsplit2.3 | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dmdprdsplit2.4 | 
							⊢ ( 𝜑  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } )  | 
						
						
							| 10 | 
							
								
							 | 
							dmdprdsplit2lem.k | 
							⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eleq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑌  ∈  𝐼  ↔  𝑌  ∈  ( 𝐶  ∪  𝐷 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑌  ∈  ( 𝐶  ∪  𝐷 )  ↔  ( 𝑌  ∈  𝐶  ∨  𝑌  ∈  𝐷 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							bitrdi | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑌  ∈  𝐼  ↔  ( 𝑌  ∈  𝐶  ∨  𝑌  ∈  𝐷 ) ) )  | 
						
						
							| 15 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝐶  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 17 | 
							
								16 3
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐼 )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐶 ) : 𝐶 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 20 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 21 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  𝑌  ∈  𝐶 )  | 
						
						
							| 23 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  ≠  𝑌 )  | 
						
						
							| 24 | 
							
								15 20 21 22 23 4
							 | 
							dprdcntz | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( ( 𝑆  ↾  𝐶 ) ‘ 𝑌 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑋  ∈  𝐶  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑌  ∈  𝐶  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑌 )  =  ( 𝑆 ‘ 𝑌 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑌 )  =  ( 𝑆 ‘ 𝑌 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑍 ‘ ( ( 𝑆  ↾  𝐶 ) ‘ 𝑌 ) )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 30 | 
							
								24 26 29
							 | 
							3sstr3d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐶  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							exp32 | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑌  ∈  𝐶  →  ( 𝑋  ≠  𝑌  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 32 | 
							
								25
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 33 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 34 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 35 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 36 | 
							
								33 34 35
							 | 
							dprdub | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							eqsstrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 38 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 40 | 
							
								39
							 | 
							dprdssv | 
							⊢ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( Base ‘ 𝐺 )  | 
						
						
							| 41 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑌  ∈  𝐷  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑌 )  =  ( 𝑆 ‘ 𝑌 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑌 )  =  ( 𝑆 ‘ 𝑌 ) )  | 
						
						
							| 43 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							ssun2 | 
							⊢ 𝐷  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 45 | 
							
								44 3
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝐼 )  | 
						
						
							| 46 | 
							
								1 45
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐷 ) : 𝐷 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 49 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  𝑌  ∈  𝐷 )  | 
						
						
							| 50 | 
							
								43 48 49
							 | 
							dprdub | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑌 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 51 | 
							
								42 50
							 | 
							eqsstrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑆 ‘ 𝑌 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 52 | 
							
								39 4
							 | 
							cntz2ss | 
							⊢ ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( Base ‘ 𝐺 )  ∧  ( 𝑆 ‘ 𝑌 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  →  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 53 | 
							
								40 51 52
							 | 
							sylancr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 54 | 
							
								38 53
							 | 
							sstrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 55 | 
							
								37 54
							 | 
							sstrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							exp32 | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑌  ∈  𝐷  →  ( 𝑋  ≠  𝑌  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 57 | 
							
								31 56
							 | 
							jaod | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑌  ∈  𝐶  ∨  𝑌  ∈  𝐷 )  →  ( 𝑋  ≠  𝑌  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 58 | 
							
								14 57
							 | 
							sylbid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑌  ∈  𝐼  →  ( 𝑋  ≠  𝑌  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  →  𝐺  ∈  Grp )  | 
						
						
							| 60 | 
							
								6 59
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝐺  ∈  Grp )  | 
						
						
							| 62 | 
							
								39
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 64 | 
							
								61 62 63
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							difundir | 
							⊢ ( ( 𝐶  ∪  𝐷 )  ∖  { 𝑋 } )  =  ( ( 𝐶  ∖  { 𝑋 } )  ∪  ( 𝐷  ∖  { 𝑋 } ) )  | 
						
						
							| 66 | 
							
								11
							 | 
							difeq1d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐼  ∖  { 𝑋 } )  =  ( ( 𝐶  ∪  𝐷 )  ∖  { 𝑋 } ) )  | 
						
						
							| 67 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 68 | 
							
								67
							 | 
							snssd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  { 𝑋 }  ⊆  𝐶 )  | 
						
						
							| 69 | 
							
								
							 | 
							sslin | 
							⊢ ( { 𝑋 }  ⊆  𝐶  →  ( 𝐷  ∩  { 𝑋 } )  ⊆  ( 𝐷  ∩  𝐶 ) )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐷  ∩  { 𝑋 } )  ⊆  ( 𝐷  ∩  𝐶 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐶  ∩  𝐷 )  =  ( 𝐷  ∩  𝐶 )  | 
						
						
							| 72 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							eqtr3id | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐷  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 74 | 
							
								
							 | 
							sseq0 | 
							⊢ ( ( ( 𝐷  ∩  { 𝑋 } )  ⊆  ( 𝐷  ∩  𝐶 )  ∧  ( 𝐷  ∩  𝐶 )  =  ∅ )  →  ( 𝐷  ∩  { 𝑋 } )  =  ∅ )  | 
						
						
							| 75 | 
							
								70 73 74
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐷  ∩  { 𝑋 } )  =  ∅ )  | 
						
						
							| 76 | 
							
								
							 | 
							disj3 | 
							⊢ ( ( 𝐷  ∩  { 𝑋 } )  =  ∅  ↔  𝐷  =  ( 𝐷  ∖  { 𝑋 } ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝐷  =  ( 𝐷  ∖  { 𝑋 } ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							uneq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝐶  ∖  { 𝑋 } )  ∪  𝐷 )  =  ( ( 𝐶  ∖  { 𝑋 } )  ∪  ( 𝐷  ∖  { 𝑋 } ) ) )  | 
						
						
							| 79 | 
							
								65 66 78
							 | 
							3eqtr4a | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐼  ∖  { 𝑋 } )  =  ( ( 𝐶  ∖  { 𝑋 } )  ∪  𝐷 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							imaeq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  =  ( 𝑆  “  ( ( 𝐶  ∖  { 𝑋 } )  ∪  𝐷 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							imaundi | 
							⊢ ( 𝑆  “  ( ( 𝐶  ∖  { 𝑋 } )  ∪  𝐷 ) )  =  ( ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ( 𝑆  “  𝐷 ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							eqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  =  ( ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							unieqd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  =  ∪  ( ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							uniun | 
							⊢ ∪  ( ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ( 𝑆  “  𝐷 ) )  =  ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ∪  ( 𝑆  “  𝐷 ) )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  =  ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							difss | 
							⊢ ( 𝐶  ∖  { 𝑋 } )  ⊆  𝐶  | 
						
						
							| 87 | 
							
								
							 | 
							imass2 | 
							⊢ ( ( 𝐶  ∖  { 𝑋 } )  ⊆  𝐶  →  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝑆  “  𝐶 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							uniss | 
							⊢ ( ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝑆  “  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ∪  ( 𝑆  “  𝐶 ) )  | 
						
						
							| 89 | 
							
								86 87 88
							 | 
							mp2b | 
							⊢ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ∪  ( 𝑆  “  𝐶 )  | 
						
						
							| 90 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝑆  “  𝐶 )  ⊆  ran  𝑆  | 
						
						
							| 91 | 
							
								1
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  𝑆  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ran  𝑆  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 93 | 
							
								
							 | 
							mresspw | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 94 | 
							
								64 93
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 95 | 
							
								92 94
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ran  𝑆  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 96 | 
							
								90 95
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆  “  𝐶 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 97 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ( 𝑆  “  𝐶 )  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ( 𝑆  “  𝐶 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  𝐶 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 99 | 
							
								89 98
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 100 | 
							
								64 10 99
							 | 
							mrcssidd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝑆  “  𝐷 )  ⊆  ran  𝑆  | 
						
						
							| 102 | 
							
								101 95
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆  “  𝐷 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ( 𝑆  “  𝐷 )  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ( 𝑆  “  𝐷 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  𝐷 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 105 | 
							
								64 10 104
							 | 
							mrcssidd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  𝐷 )  ⊆  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 106 | 
							
								10
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 107 | 
							
								7 106
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 108 | 
							
								
							 | 
							df-ima | 
							⊢ ( 𝑆  “  𝐷 )  =  ran  ( 𝑆  ↾  𝐷 )  | 
						
						
							| 109 | 
							
								108
							 | 
							unieqi | 
							⊢ ∪  ( 𝑆  “  𝐷 )  =  ∪  ran  ( 𝑆  ↾  𝐷 )  | 
						
						
							| 110 | 
							
								109
							 | 
							fveq2i | 
							⊢ ( 𝐾 ‘ ∪  ( 𝑆  “  𝐷 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 111 | 
							
								107 110
							 | 
							eqtr4di | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  =  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  =  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐷 ) ) )  | 
						
						
							| 113 | 
							
								105 112
							 | 
							sseqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  𝐷 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 114 | 
							
								
							 | 
							unss12 | 
							⊢ ( ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∧  ∪  ( 𝑆  “  𝐷 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  →  ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ∪  ( 𝑆  “  𝐷 ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∪  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 115 | 
							
								100 113 114
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ∪  ( 𝑆  “  𝐷 ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∪  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 116 | 
							
								10
							 | 
							mrccl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 117 | 
							
								64 99 116
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 118 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 119 | 
							
								7 118
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							eqid | 
							⊢ ( LSSum ‘ 𝐺 )  =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 122 | 
							
								121
							 | 
							lsmunss | 
							⊢ ( ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∪  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 123 | 
							
								117 120 122
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∪  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 124 | 
							
								115 123
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ∪  ∪  ( 𝑆  “  𝐷 ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 125 | 
							
								85 124
							 | 
							eqsstrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 126 | 
							
								89
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ∪  ( 𝑆  “  𝐶 ) )  | 
						
						
							| 127 | 
							
								64 10 126 98
							 | 
							mrcssd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐶 ) ) )  | 
						
						
							| 128 | 
							
								10
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 129 | 
							
								6 128
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 130 | 
							
								
							 | 
							df-ima | 
							⊢ ( 𝑆  “  𝐶 )  =  ran  ( 𝑆  ↾  𝐶 )  | 
						
						
							| 131 | 
							
								130
							 | 
							unieqi | 
							⊢ ∪  ( 𝑆  “  𝐶 )  =  ∪  ran  ( 𝑆  ↾  𝐶 )  | 
						
						
							| 132 | 
							
								131
							 | 
							fveq2i | 
							⊢ ( 𝐾 ‘ ∪  ( 𝑆  “  𝐶 ) )  =  ( 𝐾 ‘ ∪  ran  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 133 | 
							
								129 132
							 | 
							eqtr4di | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  =  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐶 ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  =  ( 𝐾 ‘ ∪  ( 𝑆  “  𝐶 ) ) )  | 
						
						
							| 135 | 
							
								127 134
							 | 
							sseqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 136 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 137 | 
							
								135 136
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 138 | 
							
								121 4
							 | 
							lsmsubg | 
							⊢ ( ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  →  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 139 | 
							
								117 120 137 138
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 140 | 
							
								10
							 | 
							mrcsscl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 141 | 
							
								64 125 139 140
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 142 | 
							
								
							 | 
							sslin | 
							⊢ ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) )  ⊆  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  →  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ⊆  ( ( 𝑆 ‘ 𝑋 )  ∩  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) ) )  | 
						
						
							| 143 | 
							
								141 142
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ⊆  ( ( 𝑆 ‘ 𝑋 )  ∩  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) ) )  | 
						
						
							| 144 | 
							
								17
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝑋  ∈  𝐼 )  | 
						
						
							| 145 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 146 | 
							
								144 145
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 147 | 
							
								25
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 148 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 149 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 150 | 
							
								148 149 67
							 | 
							dprdub | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 151 | 
							
								147 150
							 | 
							eqsstrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 152 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 153 | 
							
								6 152
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 155 | 
							
								121
							 | 
							lsmlub | 
							⊢ ( ( ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∧  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  ↔  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) ) )  | 
						
						
							| 156 | 
							
								146 117 154 155
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∧  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  ↔  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) ) )  | 
						
						
							| 157 | 
							
								151 135 156
							 | 
							mpbi2and | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 158 | 
							
								157
							 | 
							ssrind | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 159 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } )  | 
						
						
							| 160 | 
							
								158 159
							 | 
							sseqtrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  {  0  } )  | 
						
						
							| 161 | 
							
								121
							 | 
							lsmub1 | 
							⊢ ( ( ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 162 | 
							
								146 117 161
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 163 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 164 | 
							
								146 163
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →   0   ∈  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 165 | 
							
								162 164
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →   0   ∈  ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 166 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 167 | 
							
								120 166
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →   0   ∈  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 168 | 
							
								165 167
							 | 
							elind | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →   0   ∈  ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 169 | 
							
								168
							 | 
							snssd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  {  0  }  ⊆  ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 170 | 
							
								160 169
							 | 
							eqssd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  {  0  } )  | 
						
						
							| 171 | 
							
								
							 | 
							resima2 | 
							⊢ ( ( 𝐶  ∖  { 𝑋 } )  ⊆  𝐶  →  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) )  =  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  | 
						
						
							| 172 | 
							
								86 171
							 | 
							mp1i | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) )  =  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							unieqd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) )  =  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  | 
						
						
							| 174 | 
							
								173
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) ) )  =  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  | 
						
						
							| 175 | 
							
								147 174
							 | 
							ineq12d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  =  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 176 | 
							
								148 149 67 5 10
							 | 
							dprddisj | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( ( 𝑆  ↾  𝐶 )  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  =  {  0  } )  | 
						
						
							| 177 | 
							
								175 176
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) )  =  {  0  } )  | 
						
						
							| 178 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 179 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  →  Fun  𝑆 )  | 
						
						
							| 180 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  𝑆  →  ∪  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  =  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  | 
						
						
							| 181 | 
							
								178 179 180
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  =  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  | 
						
						
							| 182 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 183 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 184 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑦  ∈  ( 𝐶  ∖  { 𝑋 } )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 185 | 
							
								184
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 186 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 187 | 
							
								
							 | 
							eldifsni | 
							⊢ ( 𝑦  ∈  ( 𝐶  ∖  { 𝑋 } )  →  𝑦  ≠  𝑋 )  | 
						
						
							| 188 | 
							
								187
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  𝑦  ≠  𝑋 )  | 
						
						
							| 189 | 
							
								182 183 185 186 188 4
							 | 
							dprdcntz | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 ) ) )  | 
						
						
							| 190 | 
							
								185
							 | 
							fvresd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) )  | 
						
						
							| 191 | 
							
								25
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 192 | 
							
								191
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  ( 𝑍 ‘ ( ( 𝑆  ↾  𝐶 ) ‘ 𝑋 ) )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 193 | 
							
								189 190 192
							 | 
							3sstr3d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  ∧  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) )  →  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 194 | 
							
								193
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 195 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) )  ↔  ∀ 𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 196 | 
							
								194 195
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  𝑦  ∈  ( 𝐶  ∖  { 𝑋 } ) ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 197 | 
							
								181 196
							 | 
							eqsstrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 198 | 
							
								39
							 | 
							subgss | 
							⊢ ( ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 199 | 
							
								146 198
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 200 | 
							
								39 4
							 | 
							cntzsubg | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆 ‘ 𝑋 )  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 201 | 
							
								61 199 200
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 202 | 
							
								10
							 | 
							mrcsscl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) )  ∧  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 203 | 
							
								64 197 201 202
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) )  | 
						
						
							| 204 | 
							
								4 117 146 203
							 | 
							cntzrecd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 205 | 
							
								121 146 117 120 5 170 177 4 204
							 | 
							lsmdisj3 | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆 ‘ 𝑋 )  ∩  ( ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐶  ∖  { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  =  {  0  } )  | 
						
						
							| 206 | 
							
								143 205
							 | 
							sseqtrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ⊆  {  0  } )  | 
						
						
							| 207 | 
							
								58 206
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐶 )  →  ( ( 𝑌  ∈  𝐼  →  ( 𝑋  ≠  𝑌  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) )  ∧  ( ( 𝑆 ‘ 𝑋 )  ∩  ( 𝐾 ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ⊆  {  0  } ) )  |