| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmdprdsplitlem.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							dmdprdsplitlem.w | 
							⊢ 𝑊  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  | 
						
						
							| 3 | 
							
								
							 | 
							dmdprdsplitlem.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							dmdprdsplitlem.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 5 | 
							
								
							 | 
							dmdprdsplitlem.3 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐼 )  | 
						
						
							| 6 | 
							
								
							 | 
							dmdprdsplitlem.4 | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							dmdprdsplitlem.5 | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) ) )  | 
						
						
							| 8 | 
							
								3 4
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								8 5
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fdm | 
							⊢ ( ( 𝑆  ↾  𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 )  →  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  =  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  | 
						
						
							| 12 | 
							
								1 11
							 | 
							eldprd | 
							⊢ ( dom  ( 𝑆  ↾  𝐴 )  =  𝐴  →  ( ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  ↔  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝐹 )  ∈  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  ↔  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  →  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 18 | 
							
								14
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐴 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐴 ) )  | 
						
						
							| 20 | 
							
								9 10
							 | 
							syl | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 24 | 
							
								11 19 21 22 23
							 | 
							dprdff | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓 : 𝐴 ⟶ ( Base ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							feqmptd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  =  ( 𝑛  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑛 ) ) )  | 
						
						
							| 26 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐴  ⊆  𝐼 )  | 
						
						
							| 27 | 
							
								26
							 | 
							resmptd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ↾  𝐴 )  =  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑛  ∈  𝐴  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  =  ( 𝑓 ‘ 𝑛 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							mpteq2ia | 
							⊢ ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  =  ( 𝑛  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑛 ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ↾  𝐴 )  =  ( 𝑛  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑛 ) ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  =  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ↾  𝐴 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐺  Σg  𝑓 )  =  ( 𝐺  Σg  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ↾  𝐴 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 34 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 35 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 36 | 
							
								
							 | 
							grpmnd | 
							⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐺  ∈  Mnd )  | 
						
						
							| 38 | 
							
								3 4
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐼  ∈  V )  | 
						
						
							| 40 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 41 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐴 ) )  | 
						
						
							| 42 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  | 
						
						
							| 43 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } )  | 
						
						
							| 44 | 
							
								11 41 42 43
							 | 
							dprdfcl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑛 )  ∈  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑛 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑛  ∈  𝐴  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑛 )  =  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑛 )  =  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 47 | 
							
								44 46
							 | 
							eleqtrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 48 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑛 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 50 | 
							
								1
							 | 
							subg0cl | 
							⊢ ( ( 𝑆 ‘ 𝑛 )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →   0   ∈  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  ∧  ¬  𝑛  ∈  𝐴 )  →   0   ∈  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 53 | 
							
								47 52
							 | 
							ifclda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  𝐼 )  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  ∈  ( 𝑆 ‘ 𝑛 ) )  | 
						
						
							| 54 | 
							
								38
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ∈  V )  | 
						
						
							| 55 | 
							
								54
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ∈  V )  | 
						
						
							| 56 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  Fun  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) )  | 
						
						
							| 58 | 
							
								11 19 21 22
							 | 
							dprdffsupp | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  finSupp   0  )  | 
						
						
							| 59 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  𝐴 )  | 
						
						
							| 60 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  →  ¬  𝑛  ∈  ( 𝑓  supp   0  ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝑛  ∈  𝐴 )  →  ¬  𝑛  ∈  ( 𝑓  supp   0  ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							eldifd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  ( 𝐴  ∖  ( 𝑓  supp   0  ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							ssidd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑓  supp   0  )  ⊆  ( 𝑓  supp   0  ) )  | 
						
						
							| 64 | 
							
								38 5
							 | 
							ssexd | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 65 | 
							
								64
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐴  ∈  V )  | 
						
						
							| 66 | 
							
								1
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 67 | 
							
								66
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →   0   ∈  V )  | 
						
						
							| 68 | 
							
								24 63 65 67
							 | 
							suppssr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓 ‘ 𝑛 )  =   0  )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝑛  ∈  ( 𝐴  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓 ‘ 𝑛 )  =   0  )  | 
						
						
							| 70 | 
							
								62 69
							 | 
							syldan | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑛 )  =   0  )  | 
						
						
							| 71 | 
							
								70
							 | 
							ifeq1da | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  =  if ( 𝑛  ∈  𝐴 ,   0  ,   0  ) )  | 
						
						
							| 72 | 
							
								
							 | 
							ifid | 
							⊢ if ( 𝑛  ∈  𝐴 ,   0  ,   0  )  =   0   | 
						
						
							| 73 | 
							
								71 72
							 | 
							eqtrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  =   0  )  | 
						
						
							| 74 | 
							
								73 39
							 | 
							suppss2 | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) )  | 
						
						
							| 75 | 
							
								
							 | 
							fsuppsssupp | 
							⊢ ( ( ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ∈  V  ∧  Fun  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) )  ∧  ( 𝑓  finSupp   0   ∧  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) ) )  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  finSupp   0  )  | 
						
						
							| 76 | 
							
								55 57 58 74 75
							 | 
							syl22anc | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  finSupp   0  )  | 
						
						
							| 77 | 
							
								2 34 40 53 76
							 | 
							dprdwd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ∈  𝑊 )  | 
						
						
							| 78 | 
							
								2 34 40 77 23
							 | 
							dprdff | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  | 
						
						
							| 79 | 
							
								2 34 40 77 33
							 | 
							dprdfcntz | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ran  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑛  ∈  ( 𝐼  ∖  𝐴 )  →  ¬  𝑛  ∈  𝐴 )  | 
						
						
							| 81 | 
							
								80
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  𝐴 ) )  →  ¬  𝑛  ∈  𝐴 )  | 
						
						
							| 82 | 
							
								81
							 | 
							iffalsed | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑛  ∈  ( 𝐼  ∖  𝐴 ) )  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  =   0  )  | 
						
						
							| 83 | 
							
								82 39
							 | 
							suppss2 | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  supp   0  )  ⊆  𝐴 )  | 
						
						
							| 84 | 
							
								23 1 33 37 39 78 79 83 76
							 | 
							gsumzres | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐺  Σg  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  ↾  𝐴 ) )  =  ( 𝐺  Σg  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ) )  | 
						
						
							| 85 | 
							
								17 32 84
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ) )  | 
						
						
							| 86 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐹  ∈  𝑊 )  | 
						
						
							| 87 | 
							
								1 2 34 40 86 77
							 | 
							dprdf11 | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) )  ↔  𝐹  =  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ) )  | 
						
						
							| 88 | 
							
								85 87
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐹  =  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							fveq1d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ‘ 𝑋 ) )  | 
						
						
							| 90 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑋  ∈  ( 𝐼  ∖  𝐴 )  →  𝑋  ∈  𝐼 )  | 
						
						
							| 91 | 
							
								90
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑋  ∈  𝐼 )  | 
						
						
							| 92 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑛  =  𝑋  →  ( 𝑛  ∈  𝐴  ↔  𝑋  ∈  𝐴 ) )  | 
						
						
							| 93 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑋  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑋 ) )  | 
						
						
							| 94 | 
							
								92 93
							 | 
							ifbieq1d | 
							⊢ ( 𝑛  =  𝑋  →  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  =  if ( 𝑋  ∈  𝐴 ,  ( 𝑓 ‘ 𝑋 ) ,   0  ) )  | 
						
						
							| 95 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  =  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) )  | 
						
						
							| 96 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑓 ‘ 𝑛 )  ∈  V  | 
						
						
							| 97 | 
							
								96 66
							 | 
							ifex | 
							⊢ if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  )  ∈  V  | 
						
						
							| 98 | 
							
								94 95 97
							 | 
							fvmpt3i | 
							⊢ ( 𝑋  ∈  𝐼  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ‘ 𝑋 )  =  if ( 𝑋  ∈  𝐴 ,  ( 𝑓 ‘ 𝑋 ) ,   0  ) )  | 
						
						
							| 99 | 
							
								91 98
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  ∈  𝐴 ,  ( 𝑓 ‘ 𝑛 ) ,   0  ) ) ‘ 𝑋 )  =  if ( 𝑋  ∈  𝐴 ,  ( 𝑓 ‘ 𝑋 ) ,   0  ) )  | 
						
						
							| 100 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑋  ∈  ( 𝐼  ∖  𝐴 )  →  ¬  𝑋  ∈  𝐴 )  | 
						
						
							| 101 | 
							
								100
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ¬  𝑋  ∈  𝐴 )  | 
						
						
							| 102 | 
							
								101
							 | 
							iffalsed | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  if ( 𝑋  ∈  𝐴 ,  ( 𝑓 ‘ 𝑋 ) ,   0  )  =   0  )  | 
						
						
							| 103 | 
							
								89 99 102
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  ∧  ( 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  𝐴 ( ( 𝑆  ↾  𝐴 ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐹 ‘ 𝑋 )  =   0  )  | 
						
						
							| 104 | 
							
								16 103
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐼  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑋 )  =   0  )  |