Metamath Proof Explorer


Theorem dmdsl3

Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdsl3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 dmdi ( ( ( 𝐵C𝐴C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶 ) ) → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) )
2 1 exp32 ( ( 𝐵C𝐴C𝐶C ) → ( 𝐵 𝑀* 𝐴 → ( 𝐴𝐶 → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) ) ) )
3 2 3com12 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐵 𝑀* 𝐴 → ( 𝐴𝐶 → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) ) ) )
4 3 imp32 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶 ) ) → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) )
5 4 3adantr3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) )
6 chjcom ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )
7 6 ineq2d ( ( 𝐴C𝐵C ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) )
8 7 3adant3 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 𝐴 ) ) )
9 df-ss ( 𝐶 ⊆ ( 𝐴 𝐵 ) ↔ ( 𝐶 ∩ ( 𝐴 𝐵 ) ) = 𝐶 )
10 9 biimpi ( 𝐶 ⊆ ( 𝐴 𝐵 ) → ( 𝐶 ∩ ( 𝐴 𝐵 ) ) = 𝐶 )
11 8 10 sylan9req ( ( ( 𝐴C𝐵C𝐶C ) ∧ 𝐶 ⊆ ( 𝐴 𝐵 ) ) → ( 𝐶 ∩ ( 𝐵 𝐴 ) ) = 𝐶 )
12 11 3ad2antr3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ ( 𝐴 𝐵 ) ) ) → ( 𝐶 ∩ ( 𝐵 𝐴 ) ) = 𝐶 )
13 5 12 eqtrd ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝐶𝐵 ) ∨ 𝐴 ) = 𝐶 )