Step |
Hyp |
Ref |
Expression |
1 |
|
dmdi |
⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
2 |
1
|
exp32 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 → ( 𝐴 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) ) ) |
3 |
2
|
3com12 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 → ( 𝐴 ⊆ 𝐶 → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) ) ) |
4 |
3
|
imp32 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
5 |
4
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
6 |
|
chjcom |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |
7 |
6
|
ineq2d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
9 |
|
df-ss |
⊢ ( 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐶 ) |
10 |
9
|
biimpi |
⊢ ( 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐶 ) |
11 |
8 10
|
sylan9req |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐶 ) |
12 |
11
|
3ad2antr3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝐶 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐶 ) |
13 |
5 12
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐶 ) |