Metamath Proof Explorer


Theorem dmep

Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)

Ref Expression
Assertion dmep dom E = V

Proof

Step Hyp Ref Expression
1 eqv ( dom E = V ↔ ∀ 𝑥 𝑥 ∈ dom E )
2 el 𝑦 𝑥𝑦
3 epel ( 𝑥 E 𝑦𝑥𝑦 )
4 3 exbii ( ∃ 𝑦 𝑥 E 𝑦 ↔ ∃ 𝑦 𝑥𝑦 )
5 2 4 mpbir 𝑦 𝑥 E 𝑦
6 vex 𝑥 ∈ V
7 6 eldm ( 𝑥 ∈ dom E ↔ ∃ 𝑦 𝑥 E 𝑦 )
8 5 7 mpbir 𝑥 ∈ dom E
9 1 8 mpgbir dom E = V