Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dmeq | ⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss | ⊢ ( 𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵 ) | |
2 | dmss | ⊢ ( 𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴 ) | |
3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | eqss | ⊢ ( dom 𝐴 = dom 𝐵 ↔ ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) |