Metamath Proof Explorer


Theorem dmeq

Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion dmeq ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 )

Proof

Step Hyp Ref Expression
1 dmss ( 𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵 )
2 dmss ( 𝐵𝐴 → dom 𝐵 ⊆ dom 𝐴 )
3 1 2 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 eqss ( dom 𝐴 = dom 𝐵 ↔ ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) )
6 3 4 5 3imtr4i ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 )