Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmeq | ⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss | ⊢ ( 𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵 ) | |
| 2 | dmss | ⊢ ( 𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴 ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) ) |
| 4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 5 | eqss | ⊢ ( dom 𝐴 = dom 𝐵 ↔ ( dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴 ) ) | |
| 6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) |