Metamath Proof Explorer


Theorem dmexd

Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis dmexd.1 ( 𝜑𝐴𝑉 )
Assertion dmexd ( 𝜑 → dom 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 dmexd.1 ( 𝜑𝐴𝑉 )
2 dmexg ( 𝐴𝑉 → dom 𝐴 ∈ V )
3 1 2 syl ( 𝜑 → dom 𝐴 ∈ V )