Metamath Proof Explorer


Theorem dmexg

Description: The domain of a set is a set. Corollary 6.8(2) of TakeutiZaring p. 26. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion dmexg ( 𝐴𝑉 → dom 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 uniexg ( 𝐴𝑉 𝐴 ∈ V )
2 uniexg ( 𝐴 ∈ V → 𝐴 ∈ V )
3 ssun1 dom 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 )
4 dmrnssfld ( dom 𝐴 ∪ ran 𝐴 ) ⊆ 𝐴
5 3 4 sstri dom 𝐴 𝐴
6 ssexg ( ( dom 𝐴 𝐴 𝐴 ∈ V ) → dom 𝐴 ∈ V )
7 5 6 mpan ( 𝐴 ∈ V → dom 𝐴 ∈ V )
8 1 2 7 3syl ( 𝐴𝑉 → dom 𝐴 ∈ V )