Metamath Proof Explorer


Theorem dmhashres

Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 12-Jan-2017)

Ref Expression
Assertion dmhashres dom ( ♯ ↾ 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 dmres dom ( ♯ ↾ 𝐴 ) = ( 𝐴 ∩ dom ♯ )
2 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
3 2 fdmi dom ♯ = V
4 3 ineq2i ( 𝐴 ∩ dom ♯ ) = ( 𝐴 ∩ V )
5 inv1 ( 𝐴 ∩ V ) = 𝐴
6 1 4 5 3eqtri dom ( ♯ ↾ 𝐴 ) = 𝐴